

CURRICULUM & SYLLABUS

BACHELOR OF TECHNOLOGY

COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE)

(ACADEMIC YEAR - 2020 -2021)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DECLARATION

I, **Dr. S. GEETHA**, Head of Computer Science and Engineering Department, hereby declare that this copy of the syllabus (B.Tech –Computer Science and Engineering – Artificial IntelligenceFull Time) is the final version which is being taught in the class and uploaded in our University website. I assure that the Syllabi available in our University website is verified and found correct. The Curriculum and Syllabi have been ratified by our Academic Council / Vice Chancellor.

Date: Signature

	I SEMESTER										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С				
1	BEN18001/BEN20001	Technical English –I	Ту	1	0/0	2/0	2				
2	BMA18001/ BMA20001	Mathematics – I	Ту	3	1/0	0/0	4				
3	BPH18001/ BPH20001	Engineering Physics –I	Ту	2	0/1	0/0	3				
4	BCH18001/ BCH20001	Engineering Chemistry –I	Ty	2	0/1	0/0	3				
5	BES18001/ BES20001	Basic Electrical &Electronics Engineering	Ту	2	0/1	0/0	3				
6	BES18002 / BES20002	Basic Mechanical &Civil Engineering	Ту	2	0/1	0/0	3				
		PRACTICALS*	•								
1	BES18L01/ BES20L01	Basic Engineering Workshop	Lb	0	0/0	2/0	1				
2	BES18ET1/BES20ET1	Orientation to Entrepreneurship &Project Lab	ETL	0	0/0	2/0	1				

Credits Sub Total: 20

H. CD. MICONED										
	II SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/	L	T /	P/R	С			
			Lb/		SLr					
			ETL							
1	BMA18003/BMA20003	Mathematics – II	Ty	3	1/0	0/0	4			
2	BPH18002/ BPH20002	Engineering Physics –II	Ty	2	0/1	0/0	3			
3	BCH18002/ BCH20002	Engineering Chemistry –II	Ty	2	0/1	0/0	3			
4	BES18003/ BES20003	Environmental Science*	Ty	N	Von cred	it cours	e			
		PRACTICALS*								
1	BEN18ET1/BEN20ET1	Communication Lab	ETL	1	0/0	2/0	1			
2	BES18ET2/BES20ET2	Basic Engineering Graphics	ETL	1	0/0	2/0	2			
3	BES18L02/BES20L02	Integrated Physical Science Lab	Lb	0	0/0	2/0	1			
4	BES18ET3/BES20ET3	C Programming and Lab	ETL	1	0/0	2/0	2			

Credits Sub Total: 16
TOTAL CREDITS: 36

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

	III SEMESTER										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/	L	T /	P/R	C				
			Lb/		SLr						
			ETL								
1	BMA18008/BMA20008	Discrete Mathematics	Ty	3	1/0	0/0	4				
2	BCS18001/BCS20001	Data Structures	Ty	3	1/0	0/0	4				
3	BCS18003/BCS20003	Computer Organization and Architecture	Ту	3	1/0	0/0	4				
4	BEC18I01/BEC20I01	Digital Systems	Ту	3	0/0	0/0	3				
		PRACTICALS*									
1	BCS18L01/BCS20L01	Data Structures Lab	Lb	0	0/0	3/0	1				
2	BCS18L02/BCS20L02	Object Oriented Programming With C++ Lab	Lb	0	0/0	3/0	1				
3	BEC18IL1/BEC20IL1	Digital Systems Lab	Lb	0	0/0	3/0	1				
4	BCS20AET1	Artificial Intelligence: Principles and Techniques	ETL	1	0/1	3/0	3				

Credits Sub Total: 21

	IV SEMESTER											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BMA18016/BMA20016	Statistics for Computer Engineers	Ту	3	1/0	0/0	4					
2	BCS18004/BCS20004	Database Management Systems	Ту	3	0/1	0/0	4					
3	BCS18005/BCS20005	Design and Analysis of Algorithms	Ty	3	0/0	0/0	3					
4	BEC18I02/BEC20I02	Microprocessors and Microcontrollers	Ty	3	0/0	0/0	3					
5	BHS18NC1/BHS20NC1 BHS18NC2/BHS20NC2	The Indian Constitution*/The Indian Traditional Knowledge*	Ту	2	0/0	0/0	NC					
		PRACTICALS*										
1	BCS20AET2	Deep Learning and its Applications	ETL	1	0/1	3/0	3					
2	BCS18L03/BCS20L03	Database Management Systems Lab	Lb	0	0/0	3/0	1					
3	BCS18L04/BCS20L04	Design and Analysis of Algorithms Lab	Lb	0	0/0	3/0	1					
4	BEC18IL2/BES20IL2	Microprocessors and Microcontrollers Lab	Lb	0	0/0	3/0	1					
5	BCS18TS1/BCS20TS1	Technical Skill I (Evaluation)	Lb	0	0/0	3/0	1					
6	BEN18SK1/BEN20SK1	Soft Skill I	ETL	0	0/0	3/0	1					

Credits Sub Total: 22

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

		V SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BCS18006/BCS20006	Operating Systems	Ту	3	0/0	0/0	3
2	BCS18007/BCS20007	Computer Networks	Ту	3	0/0	0/0	3
3	BXX180EX/BXX200EX	Open Elective	Ту	3	0/0	0/0	3
4	BCS18008/BCS20008	System Software and Principles of Compiler Design	Ту	3	0/0	0/0	3
5	BCS20A03	Big Data Analytics	Ту	3	0/0	0/0	3
		PRACTICALS*					
1	BCS18ET2/BCS20ET2	Computer Graphics	ETL	1	0/1	3/0	3
2	BCS18L05/BCS20L05	Network Programming Lab	Lb	0	0/0	3/0	1
3	BCS18L06/BCS20L06	Operating Systems Lab	Lb	0	0/0	3/0	1
4	BCS20AL1	Big Data Analytics Lab	Lb	0	0/0	3/0	1
5	BCS18TS2/BCS20TS2	Technical Skill II	Lb	0	0/0	3/0	1

Credits Sub Total: 22

		VI SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BCS18009/BCS20009	Object Oriented Software Engineering	Ту	3	1/0	0/0	4
2	BIT18003/BIT20003	Web Technology and Web Services	Ту	3	0/0	0/0	3
3	BXX18OEX/BXX20OEX	Open Elective	Ty	3	0/0	0/0	3
4	BCS20A04	Natural Language Processing	Ту	3	0/0	0/0	3
		PRACTICALS*					
1	BCS18ET3/BCS20ET3	PHP/MySQL	ETL	1	0/1	3/0	3
2	BCS18L08/BCS20L08	Object Oriented Software Engineering Lab	Lb	0	0/0	3/0	1
3	BCS20AL2	Natural Language Processing Lab	Lb	0	0/0	3/0	1
4	BEN18SK2/ BEN20SK2	Soft Skill II	ETL	0	0/0	3/0	1
5	BCS18L09/BCS20L09	Inplant Training / Internship / Mini Project	Lb	0	0/0	3/0	1
6	BCS18TS3/BCS20TS3	Technical Skill III (Evaluation)	Lb	0	0/0	3/0	1

Credits Sub Total: 21

C: Credits L: Lecture T: Tutorial S. Lr: Supervised Learning P: Problem / Practical

R: ResearchTy/Lb/ETL: Theory/Lab/Embedded Theory and Lab*Internal evaluation

		VII SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BCS18010/BCS20010	Data Warehousing and Data Mining	Ту	3	0/0	0/3	4
2	BCS18011/BCS20011	Dot Net Framework	Ту	3	1/0	0/0	4
3	BMG18002/BMG20002	Management Concepts and Organizational Behavior	Ту	3	0/0	0/0	3
4	BCS20A05	Data Visualization Techniques	Ту	3	0/0	0/3	4
		PRACTICALS*					
1	BXX18OLX/BXX20OLX	Open Lab	Lb	0	0/0	3/0	1
2	BCS18L11/BCS20L11	Data Mining Lab	Lb	0	0/0	3/0	1
3	BCS18L12/BCS20L12	Dot Net Lab	Lb	0	0/0	3/0	1
4	BCS18L13/BCS20L13	Project Phase – I	Lb	0	0/0	3/3	2
5	BHS18FLX/BHS20FLX	Foreign Language	Lb	0	0/0	3/0	1

Credits Sub Total: 21

	VIII SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	C			
1	BCS18EXX/BCS20EXX	Elective I	Ту	3	0/0	0/0	3			
2	BCS20A06	Machine Learning	Ту	3	0/0	0/0	3			
3	BCS18EXX/BCS20EXX	Elective II	Ту	3	0/0	0/0	3			
	PRACTICALS*									
1	BCS18L14/BCS20L14	Project (Phase – II)	Lb	0	0/0	12/1 2	8			

Credits Sub Total: 17

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

		ELECTIVE -I & II(CSE)					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BCS18E24/ BCS20E24	Information Storage Management	Ту	3	0/0	0/0	3
2	BCS18E25/ BCS20E25	Network Infrastructure Management	Ty	3	0/0	0/0	3
3	BCS18E26/BCS20E26	Foundations of Parallel Programming	Ту	3	0/0	0/0	3
4	BCS18E27/ BCS20E27	Virtualization	Ty	3	0/0	0/0	3
5	BCS18E28/ BCS20E28	Hadoop Distributed File System	Ту	3	0/0	0/0	3
6	BCS18E29/ BCS20E29	Mobile Databases	Ту	3	0/0	0/0	3
7	BCS18E30/ BCS20E30	Web Engineering	Ту	3	0/0	0/0	3
8	BCS18E31/ BCS20E31	4G Networks	Ту	3	0/0	0/0	3
9	BCS18E16/ BCS20E16	Database Security	Ту	3	0/0	0/0	3
10	BCS18E01/BCS20E01	Video Analytics	Ту	3	0/0	0/0	3
11	BCS18E34/ BCS20E34	Mainframe Computing	Ту	3	0/0	0/0	3
12	BCS18E35/ BCS20E35	Neuro Fuzzy Computing	Ту	3	0/0	0/0	3
13	BCS18E02/ BCS20E02	AI and Cyber Security	Ту	3	0/0	0/0	3
14	BCS18E03/ BCS20E03	Business Intelligence	Ту	3	0/0	0/0	3
15	BCS18E39/ BCS20E39	Real Time Systems	Ту	3	0/0	0/0	3
16	BCS18E40/ BCS20E40	Distributed Computing	Ту	3	0/0	0/0	3

Credit Summary

Semester: 1 : 20 Semester: 2 : 16 Semester: 3 : 21 Semester: 4 : 22 : 22 Semester: 5 Semester: 6 : 21 Semester: 7 : 21 Semester: 8 : 17

Total Credits: 160

		Open Electives -CIVIL					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/	L	T/	P/R	C
			Lb/		SLr		
			ETL				
1	BCE18OE1/BCE20OE1	Water Pollution And Its Management	Ty	3	0/0	0/0	3
2	BCE18OE2/BCE20OE2	Environment, Health And Safety In Industries	Ту	3	0/0	0/0	3
3	BCE18OE3/BCE20OE3	Green Building And Vastu Concepts	Ту	3	0/0	0/0	3
4	BCE18OE4/BCE20OE4	Climate Change And Sustainable Development	Ту	3	0/0	0/0	3
5	BCE18OE5/BCE20OE5	Intelligent Transportation Systems	Ty	3	0/0	0/0	3
6	BCE18OE6/BCE20OE6	Geographical Information System And Mapping	Ту	3	0/0	0/0	3
7	BCE18OE7/BCE20OE7	Industrial Pollution Prevention And Cleaner Production	Ту	3	0/0	0/0	3
8	BCE18OE8/BCE20OE8	Air Pollution And Control	Ту	3	0/0	0/0	3
		Open Electives Lab		•	•		•
1	BCE18OL1/BCE20OL1	Building Drawing Practice Using Autocadd	LB	0	0/0	3/0	1
2	BCE18OL2/BCE20OL2	GeographicalInformationSystemAn d MappingLab	LB	0	0/0	3/0	1
3	BCE18OL3/BCE20OL3	Environmental Engineering Laboratory	LB	0	0/0	3/0	1

	OPEN	ELECTIVES- CHEMICAL ENGINEERIN	IG				
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BCT18OE1/BCT20OE1	Fundamentals Of Nanoscience	Ty	3	0/0	0/0	3
2	BCT18OE2/BCT20OE2	Electrochemical Engineering	Ту	3	0/0	0/0	3
3	BCT18OE3/BCT20OE3	Alternative Fuels And Energy System	Ty	3	0/0	0/0	3
4	BCT18OE4/BCT20OE4	Petrochemical Unit Processes	Ty	3	0/0	0/0	3
5	BCT18OE5/BCT20OE5	Principles Of Desalination Technologies	Ту	3	0/0	0/0	3
6	BCT18OE6/BCT20OE6	Piping Design Engineering	Ty	3	0/0	0/0	3
7	BCT18OE7/BCT20OE7	E-Waste Management	Ту	3	0/0	0/0	3

	OPEN ELECTIVE- Electrical and Electronics Engineering										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/ R	С				
1	BEE18OE1/BEE20OE1	Electrical Safety for Engineers	Ty	3	0/0	0/0	3				
2	BEE18OE2/BEE20OE2	Energy Conservation Techniques	Ty	3	0/0	0/0	3				
3	BEE18OE3/BEE20OE3	Electric Vehicle Technology	Ty	3	0/0	0/0	3				
4	BEE180E4/BEE200E4	Biomedical Instrumentation	Ty	3	0/0	0/0	3				
5	BEE18OE5/BEE20OE5	Introduction to Power Electronics	Ту	3	0/0	0/0	3				
6	BEE18OE6/BEE20OE6	Industrial Instrumentation	Ty	3	0/0	0/0	3				
7	BEE18OE7/BEE20OE7	Solar Energy Conversion System	Ту	3	0/0	0/0	3				
8	BEE18OE8/BEE20OE8	Wind Energy Conversion System	Ту	3	0/0	0/0	3				
9	BEE18OE9/BEE20OE9	Energy Storage Technology	Ту	3	0/0	0/0	3				
		OPEN LAB									
1	BEE18OL1/BEE20OL1	Transducer Lab	Lb	0	0/0	3/0	1				
2	BEE18OL2/BEE20OL2	PLC and SCADA Lab	Lb	0	0/0	3/0	1				
3	BEE18OL3/BEE20OL3	Electrical Maintenance Lab	Lb	0	0/0	3/0	1				
4	BEE18OL4/BEE20OL4	Power Electronics Lab	Lb	0	0/0	3/0	1				
5	BEE18OL5/BEE20OL5	Bio Medical Instrumentation Lab	Lb	0	0/0	3/0	1				

	OPEN ELECTIVES-Biotechnology											
S.No	Course Code	Course Title	Ty/Lb/E TL	L	T/SL r	P/R	С					
1.	BBT18OE1/BBT20OE1	Food and Nutrition	Ty	3	0/0	2/0	3					
2.	BBT18OE2/BBT20OE2	Human Physiology	Ty	3	0/0	0/0	3					
3.	BBT18OE3/BBT20OE3	Clinical Biochemistry	Ty	3	0/0	0/0	3					
4.	BBT18OE4/BBT20OE4	Bioprocess Principles	Ty	3	0/0	0/0	3					
5.	BBT18OE5/BBT20OE5	Biosensors and biomedical Devices in Diagnostics	Ту	3	0/0	0/0	3					
6.	BBT18OE6/BBT20OE6	Basic Bioinformatics	Ту	3	0/0	0/0	3					
		Open Labs										
1.	BBT18OL1/BBT20OL1	Basic Biochemistry Lab	Lb	0	0/0	3/0	1					
2.	BBT18OL2/BBT20OL2 Basic Bioprocess Lab		Lb	0	0/0	3/0	1					
3.	BBT18OL3/BBT20OL3 Basic Microbiology Lab			0	0/0	3/0	1					
4.	BBT18OL4/BBT20OL4	Basic Bioinformatics Lab	Lb	0	0/0	3/0	1					

	OPEN ELECTIVES- MECHANICAL ENGINEERING										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С				
1	BME18OE1/BME20OE1	Industrial Engineering	Ty	3	0/0	0/0	3				
2	BME18OE2/BME20OE2	Ty	3	0/0	0/0	3					
3 BME18OE3/BME20OE3 AutomobileEngineering				3	0/0	0/0	3				
4	BME18OE4/BME20OE4	Industrial Robotics	Ty	3	0/0	0/0	3				
5	BME18OE5/BME20OE5	Renewable Sources Of Energy	Ty	3	0/0	0/0	3				
6	BME18OE6/BME20OE6	Refrigeration And Air Conditioning	Ty	3	0/0	0/0	3				
7	BME18OE7/BME20OE6	Composite Materials	Ty	3	0/0	0/0	3				
		Open Labs									
1	BME18OL1/BME20OL1	Internalcombustion Engines & steamlab	Lb	0	0/0	3/0	1				
2	2 BME18OL2/BME20OL2 Computer aided design And analysis lab				0/0	3/0	1				
3	BME18OL3/BME20OL3	Lb	0	0/0	3/0	1					

	OPEN ELECTIVES- Dr APJ Abdul Kalam Center for Research										
S.NO.	SUBJECT CODE	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BMG18OE1/BMG20OE1/ BMG13E12/BMG20E12	Technical Entrepreneurship	ETL	2	0/1	2/0	3				
2	BMG18OE2/BMG20OE2	Advanced Program in Entrepreneurship	ETL	2	0/1	2/0	3				

	OPEN ELECTIVES - ELECTRONICS AND COMMUNICATION ENGINEERING										
S.NO											
•			Lb/		S.Lr						
			ETL								
1	BEC180E1/BEC200E1	Internet of Things and its Applications	Ту	3	0/0	0/0	3				
2	BEC18OE2/BEC20OE2	Cellular Mobile Communication	Ty	3	0/0	0/0	3				
3	BEC18OE3/BEC20OE3	Satellite and its Applications	Ty	3	0/0	0/0	3				
4	BEC18OE4/BEC20OE4	Fundamentals of Sensors	Ту	3	0/0	0/0	3				
5	BEC18OE5/BEC20OE5	Basics of Microprocessors and Microcontrollers	Ту	3	0/0	0/0	3				
6	BEC18OE6/BEC20OE6	Industry 4.0 Concepts	Ту	3	0/0	0/0	3				

	OPEN LABS									
S.NO.	SUBJECT CODE	Ty/	L	T/	P/R	C				
			Lb/		S.L					
			ETL		r					
1	BEC18OL1/BEC20OL1	Sensors and IoT Lab	Lb	0	0/0	3/0	1			
2	BEC18OL2/BEC20OL2	Robotics Control Lab	Lb	0	0/0	3/0	1			
3	BEC18OL3/BEC20OL3	Basics of MATLAB	Lb	0	0/0	3/0	1			

This page intentionally left blank
Please Turn Over

SEMESTER – I DEPARTMENT OF ENGLISH

	DEFACTIVIENT	OF EN	GLISI	1				
Subject Code	Subject Name: TECHNICAL	Ty/	L	T/SLr	P/R	С		
	ENGLISH - I	Lb/						
		ETL						
BEN18001/	Prerequisite : None	Ty	1	0/0	2/0	2		
BEN20001								
L: Lecture T: 7	Tutorial SLr : Supervised Learning P	P: Projec	t R : Re	esearch C : Cı	redits			
T/L/ETL: Theo	ry / Lab / Embedded Theory and La	b						
OBJECTIVES								
 Strength 	Strengthen their vocabulary in both technical and business situations							
Get practice in functional grammar								
Learn the effective way of corresponding with officials								
• Learn to give instructions, suggestions, recommendations and comprehend and infer the								

• Strain learners in organized academic and professional writing in LSRW skills

information from the given passages.

•	Strain learners in organized academic and professional writing in LSRW skills											
COURS	RSE OUTCOMES (Cos)											
Students	completi	completing this course were able to										
CO1	Strength	en their	active a	and tech	nnical v	ocabula	ary					
CO2	Understa	and func	tional g	gramma	r and ga	ain prof	iciency	in tech	nical w	riting		
CO3	Learn th		•	_		_			ness lett	ers and	prepare	oneself
CO4		Learn to give instructions, suggestions, recommendations and comprehend and infer the information from the given passages										
CO5	Focus or	n acader	nic and	technic	al writi	ng						
Mappin	g of Cour	se Out	come w	ith Pro	gram (Outcom	e (POs)				
Cos/PO	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	-	-	-	-	3	-	3
CO2	3	3	3	3	1	3	3	1	3	3	1	3
CO3	3	2	1	3	3	2	2		2	3		3
CO4	3	3	3	3	1	2	1	3	2	3	1	3
CO5	1	1 2 2 3 3 2 2 3 3 2 3										

COS	1	2		3	3				3	3		3
COs/PSOs			PSO1		PSO2			PSO3			PSO ₄	4
CO1						1						
CO2			1			2			1		2	
CO3			1			2			1		2	
CO4			1			2			2		2	
CO5			1			2			2		1	
3/2/1 Indica	3/2/1 Indicates Strength of Corre		f Correl	lation.	3 – Higl	h. 2- Me	edium.	1- Low				

3/2/1 Hidic	ates streng	gui of Corre	Janon, 5	- High, 2	2- Micuit	лп, 1- L	20 W		
Category	Basic	Engg.Science	Humanities	Program	Program	Open	Practical/Project	Internships/Technical	Soft
	Sciences		& social	Core	Elective	Elective		Skills	Skills
			Science						

	Subject Name :	Ty/Lb/ETL	L	T/SLr	P/R	С
Subject Code:						
BEN18001/ BEN20001	TECHNICAL ENGLISH - I	Ty	1	0/0	2/0	2
					1	İ

UNIT I VOCABULARY BUILDING

6 Hrs

The concept of Word Formation-Root words and affixes from foreign languages and their use in English to form derivatives.-Homophones- Words often confused-Verbal analogy

UNIT II BASIC WRITING SKILLS

6 Hrs

Using Idioms and phrases in sentences-Sentence structures: statements, interrogative and imperative-Use of Conditional/if' clauses in sentences-Importance of proper punctuation-Creating coherence with sentence markers-Organizing coherent paragraphs in essays

UNIT III IDENTIFYING COMMON ERRORS IN WRITING

6 Hrs

Subject-verb agreement-Noun-pronoun agreement- Misplaced modifiers-Articles-Prepositions- Redundancies and Clichés

UNIT IV WRITING PRACTICE- NATURE AND STYLE OF TECHNICAL WRITING

6 Hrs

Describing Gadgets- Defining Concepts-Classifying data-Comprehension-Essay Writing-Informal and Formal Letter Writing:

UNIT V ORAL COMMUNICATION AND INTERACTIVE LEARNING

6 Hrs

(This unit involves interactive practice sessions in Language Lab)

Activities to develop knowledge in Word formation, Vocabulary and analytical thinking-Instructions and – Recommendations-Formal and Informal Registers in Speech-Listening and taking notes

Total Hours: 30

TEXT BOOK:

- 1. Quest: A Textbook of Communication Skills, Vijay Nicole, 2017.
- 2. Pushkala, R, Padmasani Kannan S, Anuradha V, Chandrasena M Rajeswaran

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan. 2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press
- (vi) Pronunciation in Use ,Mark Hancock. Cambridge University Press. 2012

	DEPARTMENT	OF MA	THEM	ATICS				
	Subject Name:	Ty/	L	T/SLr	P/R	С		
	MATHEMATICS-I	Lb/						
		ETL						
Subject								
Code								
BMA18001/	Prerequisite : None	Ty	3	1/0	2/0	4		
BMA20001								
L : Lecture T : Tutorial SLr : Supervised Learning P: Project R : Research C : Credits								
T/L/ETL: Theory / Lab / Embedded Theory and Lab								

OBJECTIVES

- Apply the Basic concepts in Algebra
- Use the Basic concepts in Matrices
- Identify and solve problems in Trigonometry
- Understand the Basic concepts in Differentiation
- Apply the Basic concepts in Functions of Several variables

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Find the summation of the given series of binomial, exponential & logarithmic
CO2	Transform a non – diagonal matrix into an equivalent diagonal matrix using orthogonal
	transformation.
CO3	Find expansion of trigonometric function into an infinite series and to separate a complex
	function into real and imaginary parts.
CO4	Apply knowledge and concepts in finding the derivative of given function and to find the
	maxima / minima of the given function.
CO5	Evaluate the partial / total differentiation and maxima / minima of a function of several
	variables.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	1	2	2	1	-	3	3	-	3	
CO2	3	3	1	2	3	1	1	-		1	-	3	
CO3	3	3	2	2	3	2	1		2	3	1	2	
CO4	3	3	2	2	1	2	1	1	2	3	1	2	
CO5	3	3	2	2	2	2	1	1	2	2	1	3	
COs/PSOs			PSO1			PSO2		PSO3			PSO4	ļ	
CO1			1			3		1			1		
CO2			1			3		1			1		
CO3			2			3		1			1		
CO4			2			3			1		1		
COS			2			3			1		1		

3/2/1 Indicates Strength Of Correlation, 3 -High, 2- Medium, 1- Low

Category	Basic Sciences	Engg.Science	Humanities & social Science	Program Core	Program Elective	Open Elective	Practical/Project	Internships/Technical Skills	Soft Skills

Subject Code:	Subject Name :	Ty/Lb/ETL	L	T/ SLr	P/R	C
BMA18001/ BMA20001	MATHEMATICS – I	Ту	3	1/0	0/0	4

UNIT I ALGEBRA 12Hrs

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

12Hrs

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

12Hrs

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ – Expansion of Tan n θ – Expansions of Sin $^n\theta$ and Cos $^n\theta$ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

12Hrs

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function – Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

UNIT V FUNCTIONS OF SEVERAL VARIABLES

12Hrs

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total Hours: 60

TEXT BOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10 th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

Subject Code	Subject Name : ENGINEERING PHYSICS - I	Ty/ Lb/ ETL	L	T/SLr	P/R	С
BPH18001/ BPH20001	Prerequisite : None	Ту	2	0/1	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES

- Outline the relation between Science, Engineering & Technology.
- Demonstrate competency in understanding basic concepts.
- Apply fundamental laws of Physics in Engineering & Technology.

	11 .	o identify & solve problems using physics concepts.												
											a 41aa.v	al affa	-4i-v- 4	امماسا
			-	sent a	ctivities	s assoc	iated	with	the c	ours	e throu	ign effe	ctive tec	nnicai
	commi			(C)										
COURS				` /	1.1	- 4								
Students							, 1'		•					
CO1	Demo	onstr	ate co	ompete	ency in	unders	tandın	g ba	SIC CO	ncep	ots.			
CO2	Utiliz	e sci	ientif	ic met	hods fo	r forma	al inve	estig	ations	& d	lemons	trate co	mpetenc	y with
	exper	imer	ntal m	ethod	s and ve	erify th	e con	cept	to cor	ntent	knowl	edge.		
CO3	Idont	:f., o.	nd na	avida	aalutiar	o for a	naina	nin o	- mach	lama				
COS	Ident	lentify and provide solutions for engineering problems.												
CO4	Relat	telate the technical concepts to day to day life and to practical situations.												
CO5	Think	Think analytically to interpret concepts.												
Mappin	ng of Course Outcome with Program Outcome (POs)													
Cos/POs	s PC)1 I	PO2	PO3	PO4	PO5	PO6	PC)7 P	08	PO9	PO10	PO11	PO12
CO1	3	1	3	1	2	2	2]	1		1	2		1
CO2	3		3	2	2	2	2]	1		2	2	1	1
CO3	3		3	3	2	2	2	1	1	1	1	2	1	2
CO4	3		3	2	2	1	2	2	2	1	2	2	1	2
CO5	3		3	2	1	1	2	1	1	2	1	2	1	1
COs/PSOs				PSO ₁	L	I	PSO2			PS	SO3		PSO ₂	1
CO1				1			3				1		1	
CO2				1			3				1		1	
CO3				2			3				1		1	
CO4				2 3 1 1										
CO5				1 3 1 1										
3/2/1 Inc	licates	Stren			relation, 3 – High, 2- Medium, 1- Low									
Category	Basic Scien		Engg.	Science	Humanities & social Science	Program Core	m Prog		Open Elective	Prac	tical/Project	Internshi Skills	ps/Technical	Soft Skills
	-										·			

Subject Code:	Subject Name : ENGINEERING PHYSICS – I	Ty/L b/ET L	L	T/ SLr	P/R	C
BPH18001/ BPH20001	ENGINEERING PHYSICS – I	Ty	2	0/1	0/0	3

UNIT I MECHANICS & PROPERTIES OF MATTER

9Hrs

Mechanics: Introduction- scalar and vector quantities - rigid body - moment of inertia - forces in nature - Newton's laws of motion - derivation of Newton's second law of motion - motion of rocket - dynamical concepts - kinematics - conservation of energy and momentum - conservative and non-conservative forces - mechanics of continuous media - friction and its applications.

Properties of Matter: Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity - twisting couple on a wire - viscosity - flow of liquid through a narrow tube: Poiseuille's law - Ostwald's viscometer - flow of blood in human body.

UNIT II SHM AND ACOUSTICS

9Hrs

SHM: Simple harmonic motion - differential equation of SHM - graphical representation of SHM - average kinetic energy of vibration - total energy of vibration - free and forced vibrations - damped and undamped vibrations - resonance - transverse wave on a string - law of transverse vibration of string - verification of the laws of transverse vibration of string - standing waves.

Acoustics :Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics Ultrasonics - Production of ultrasonic waves - detection of ultrasonic waves - acoustic grating - application of ultrasonic waves.

UNIT IIIWAVE OPTICS

9Hrs

Huygen's principle - interference of light - wavefront splitting and amplitude - airwedge - Newton's rings - Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - Rayleigh criterion for limit of resolution - diffraction grating and resolving power of a telescope.

UNIT IV ELECTROMAGNETIC THEORY

9Hrs

Electric field - coulomb's law - alternating emf - rms and average value of an alternating current & voltage - resistors, capacitors and inductor - energy stored in a capacitor - LCR circuit & resonance - magnetism- definition - types - Biot Savart law - energy stored in a magnetic field - Domain theory - electromagnetic induction - self and mutual inductance - Faraday's law of electromagnetic induction -Lenz law.

UNIT V LASER 9Hrs

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: monochromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine.

Total Hours: 45

TEXT BOOKS:

- 1. Brijlal, M. N. Avadhanulu & N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Siyaprasath, Modern Physics, S.Chand Publications, 2016

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1981

Educational and Research Institute
(DEEMED TO BE UNIVERSITY)
(An ISO Certified Institution)
University with Graded Autonomy Status

Maduravoyal, Chennai - 600 095

COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE)

DEPARTMENT OF CHEMISTRY

Subject Code	Subject Name:	Ty/	L	T/SLr	P/R	С
	ENGINEERING	Lb/				
	CHEMISTRY - I	ETL				
BCH18001/	Prerequisite : None	Ty	2	0/1	0/0	3
BCH20001						

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES

- Providing an insight into basic concepts of chemical thermodynamics.
- To create awareness about the water quality parameters, water analysis and softening of water from industrial perspective.
- Imparting fundamentals of emf, storage and fuel cells.
- Creating awareness about corrosion and its control methods.
- Introducing modern materials such as composites along with basic concepts of polymer chemistry and plastics.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Gain a clear understanding of the basics of chemical thermodynamics which include concepts
	such as Enthalpy, Entropy and Free energy.

- CO2 Obtain an overall idea of Water quality parameters, Boiler requirements, problems, Water softening and Domestic Water treatment.
- CO3 Improving the basic knowledge in electrical conductance and emf and also understand the chemical principles of storage devices.
- CO4 Observe the information about corrosion and understand the mechanisms of corrosion and the methods of corrosion control.
- **CO5** Articulate the science of polymers and composites.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	3
CO2	3	3	2	3	-	-	-	-	-	3	-	2
CO3	3	2	2	-	2	3	-	3	-	-	-	3
CO4	3	-	-	3	3	3	3	-	-	-	-	3
CO5	3	-	-	3	3	-	-	-	-	-	-	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
CO1	-	3	-	-
CO2	-	3	-	-
CO3	-	3	-	-
CO4	-	3	-	-
CO5	_	3	-	-

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

Category	Basic Sciences	Engg.Science	Humanities & social Science	Program Core	Program Elective	Open Elective	Practical/Project	Internships/Technical Skills	Soft Skills

Subject Code:	Subject Name :	Ty/Lb/ETL	L	T/ SLr	P/R	С
BCH18001/ BCH20001	ENGINEERING CHEMISTRY – I	Ту	2	0/1	0/0	3

UNIT I CHEMICAL THERMODYNAMICS

8Hrs

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties.Laws of thermodynamics – I and II laws-Need for the II law.Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria.Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

UNIT II TECHNOLOGY OF WATER

Hrs

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal and external conditioning – Lime soda, Zeolite, Demineralisation methods. Desalination processes-RO and Electrodialysis . Domestic water treatment.

UNIT III ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES

10Hrs

Conductance – Types of conductance and its Measurement. Electrochemical cells – Electrodes and electrode potential, Nernst equation – EMF measurement and its applications. Types of electrodes- Reference electrodes-Standard hydrogen electrode- Saturated calomel electrode-Quinhydrone electrode – Determination of P^H using these electrodes. Reversible and irreversible cells– Fuel cells- H_2 – O_2 fuel cell, Batteries-Lead storage battery, Nickel– Cadmium and Lithium-Battery.

UNIT IV CORROSION AND PROTECTIVE COATING

9Hrs

Introduction—Causes of Corrosion—Consequences- Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control – corrosion inhibitors, Sacrificial anode and Impressed current cathodic protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions.

UNIT V POLYMERS AND COMPOSITES

9Hrs

Monomers – Functionality – Degree of polymerization-Tacticity.Polymers – Classification, Conducting Polymers,Biodegradable polymers- Properties and applications.Plastics – Thermoplastics and thermosetting plastics,Compounding of plastics – Compression moulding, injection moulding and extrusion processes.Polymer composites- introduction- Types of composites- particle reinforced- fiber reinforced- structural composites- examples. Matrix materials, reinforcement materials- Kevlar, Polyamides, fibers, glass, carbon fibers, ceramics and metals .

Total Hours: 45

TEXTBOOKS:

- 1. S.Nanjundan & C.SreekuttanUnnithan, "Applied Chemistry", Sreelakshmi Publications, (2007)
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", Dhanpat Rai publishing Co., (Ltd.) (2013).
- 2. J. C. Kuriacose & J. Rajaram, "Chemistry in Engineering & Technology", Tata Mc Graw Hill (1996).
- 3. B.R.Puri, L.R.Sharma & M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Subject	Code S	Subject N	lame : I	BASIC		,	Ту/	L		T/SLr		P/R	С
		ELECTR			TRONI	CS]	Lb/						
]	ENGINE	ERING			I	ETL						
BES180	01/ I	Prerequis	ite : No	ne			Ту	2		0/1		0/0	3
BES200	01												
L : Lecti	ıre T : T	utorial S	Lr ։ Տսլ	pervised	l Learni	ng P: F	roject	R : R	lesea	arch C:	Credits		
		y / Lab /	Embed	lded Th	eory and	d Lab							
OBJEC	TIVES												
•	Understa	and the c	oncepts	of circu	ıit elem	ents, ci	ircuit	laws a	and o	coupled	circuits.		
		knowled								y produ	ction.		
		ormation											
	-	basic the						_			etronic g	gadgets.	
•	Demons	trate digi	tal elec	tronic c	ircuits a	nd ass	emble	simp	le de	evices.			
		COMES											
Students	comple	ting this	course	were ab	le to								
CO1	Studen	ts unders	tand Fu	ındameı	ntal law	s and tl	heorei	ns and	d the	ir practi	cal appl	lications	
CO2	Predict	the beha	vior of	differer	nt electr	ic and	magn	etic C	ircui	its.			
CO3	Identif	y conven	tional a	nd Non	-conver	ntional	Electi	rical p	owe	r Gener	ation, T	ransmiss	ion and
	Distrib	ution.											
CO4	Identif	y & App	ly sche	ematic s	ymbols	and u	nderst	and t	he v	vorking	principl	les of ele	ectronic
	devices												
CO5		e basics	of dig	gital ele	ectronics	s and	solvir	g pro	bleı	ns and	l design	n combin	national
	circuits												
Mappin							_			, ,			
Cos/PO			PO3	PO4	PO5	PO6	PO	7 P	08	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	3	1		1	1	3	2	1
CO2	3	3	3	3	3	3	3		1	1	2	2	1
CO3	3	3	3	2	3	3	2		1	2	2	3	1
CO4	3	3	3	2	3	2	2		1	3	3	2	1
CO5	3	3	3	2	3	3	2		2	2	2	2	1
COs/PSOs			PSO1	1		PSO2			PS	SO3		PSO	4
CO1			2			3				2		1	
CO2			2			3				2		1	
CO3			1			2				1		1	
CO4			2			3				2		1	
CO5			3			3				3		2	
3/2/1 Inc	dicates S	trength (Of Corre	elation,	3 - Hig	h, 2- N	lediur	n,1- L	ow				
Category	Basic		g.Science	Humanitie)pen		tical/Project	Internsh	ips/Technical	Soft
	Science	s		& social Science	Core	Elec	tive E	Elective			Skills		Skills

Subject Code:	Subject Name :	Ty/Lb/E TL	L	T/ SLr	P/R	С
BES18001/	BASIC ELECTRICAL & ELECTRONICS	Ty	2	0/1	0/0	3
BES20001	ENGINEERING	1 y	2	0/1	0/0	3

UNIT I ELECTRIC CIRCUITS

9Hrs

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

UNIT II MACHINES & MEASURING INSTRUMENTS

9Hrs

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of a Transformer – PMMC – Moving Iron types of meter – Single Phase Induction Type Energy Meter.

UNIT III BASICS OF POWER SYSTEM

9Hrs

Generation of Electric Power (Thermal, Hydro, Wind and Solar) – Transmission & Distribution of Electric Power – Types of Transmission & Distribution Schemes – Representation of Substation.

UNIT IV ELECTRON DEVICES

9Hrs

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode- Construction and Working Principle –Applications--BJT-Types of configuration-JFET.

UNIT V DIGITAL SYSTEM

9Hrs

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division–Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem, Adder – Subractor.

Total Hours: 45

TEXT BOOKS:

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- 2. A Course In Electrical And Electronic Measurements And Instrumentation, A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B.L.Theraja, A.K.Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- 5. Millman and Halkias 1991, Electronic Devices and Circuits, Tata McGraw Hill,

REFERENCE BOOK:

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, ,Tata McGraw-Hill publisher.

DEPARMENT OF MECHANICAL ENGINEERING

Subject Code	Subject Name : BASIC MECHANICAL & CIVIL ENGINEERING	Ty/ Lb/ ETL	L	T/SLr	P/R	С
BES18002 / BES20002	Prerequisite : None	Ту	2	0/1	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES

CO₃

CO4

- Learn Basics of Internal Combustion Engines, power plants and boilers
- Demonstrate How metals are formed, joined, using machining operations Lathe, Milling and Drilling machines
- To identify & solve problems in Engineering Mechanics
- Learn basics of Building materials and construction
- Know the basic process of concrete, types of masonry Construction of Roads, Railways, Bridges and Dams.

COURSE OUTCOMES (Cos) Students completing this course were able to Demonstrate the working principles of power plants, IC Engines and boilers.. CO₁ CO₂ Utilize the concept of metals forming, joining process and apply in suitable machining process Identify and provide solutions for problems in engineering mechanics CO₃ CO₄ Utilize the concept of Building materials and construction able to perform concrete mix and masonry types CO₅ Demonstrate how Roads, Railways, dams, Bridges have been constructed Mapping of Course Outcome with Program Outcome (POs) Cos/POs PO₁ PO₂ PO₃ PO4 PO₅ **PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1** 3 1 1 2 3 3 3 3 CO₂ 3 2 2 2 2 2 2 2 1 1 1 2 **CO3** 3 3 1 1 2 2 2 2 2 1 **CO4** 3 2 2 3 2 2 2 1 1 1 1 2 **CO5** 3 3 2 2 COs/PSOs PSO₁ PSO₂ PSO3 PSO₄ **CO1** 1 1 CO₂ 1 1 1

CO5		-			L		1	1	
3/2/1 Indic	ates Stren	igth Of Corr	elation, 3	8 − High,	2- Medi	um, 1- I	Low		
Category	Basic Sciences	Engg.Science	Humanities & social Science	Program Core	Program Elective	Open Elective	Practical/Project	Internships/Technical Skills	Soft Skills
		\checkmark						1	

1

1

1

1

1

Subject Code:	Subject Name :	Ty/Lb/ ETL	L	T/ SL r	P/R	C
BES18002 / BES20002	BASIC MECHANICAL & CIVIL ENGINEERING	Ту	2	0/1	0/0	3

UNIT I THERMAL ENGINEERING

9 Hrs

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant.

UNIT II MANUFACTURING PROCESS

13 Hrs

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns - Moulding tools - Types of moulding - Preparation of green sand mould - Operation of Cupola furnace.

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature.

UNIT III MECHANICS

9 Hrs

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT IV BUILDING MATERIALS AND CONSTRUCTION

7 Hrs

Materials: Brick - Types of Bricks - Test on bricks - Cement – Types, Properties and uses of cement – Steel - Properties and its uses – Ply wood and Plastics.

Construction:Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT V ROADS, RAILWAYS, BRIDGES & DAMS

7 Hrs

Roads – Classification of roads – Components in roads – Railways -Components of permanent way and their function – Bridges – Components of bridges – Dams – Purpose of dams – Types of dams.

Total Hours: 45

TEXT BOOKS:

- 1. S. Bhaskar, S. Sellappan, H.N. Sreekanth, (2002), "Basic Engineering" –Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" –, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

DEPARTMENT OF ENGINEERING SCIENCES

Subject	Code	Subjec	et Na	ame : B	ASIC		Γ	Jy/	L		T/SLr		P/R	С
		ENGI	NEE	RING '	WORK	SHOP	L	Lb/						
							Е	TL						
BES18L	.01/	Prereq	uisit	te : Noi	ne		I	Ĺ b	0		0/0		2/0	1
BES20L	.01													
L : Le	cture T	` : Tı	ıtori	al SLr	: Sup	pervised	Learr	ning	P: P	rojec	t R:	Researc	ch C : (Credits
T/L/ETI		-	ab / l	Embed	ded The	eory and	l Lab							
OBJEC	TIVES													
•	Familia	arize t	he p	lumbii	ng tool	s, fittin	gs, car	pent	ry too	ols, e	etc.			
•	Identif	y basic	ele	ectrical	wiring	g and n	easure	emen	t of e	lect	rical qu	antities	•	
•	Identif	y Elec	tron	ic con	nponen	ts, logi	c gates	and	solde	ering	g proces	SS		
						hnique				Ì				
						ly and		ı woı	rking	mod	del			
COURS														
Students	compl	eting tl	nis c	ourse v	vere abl	le to								
CO1							pentry	tool	s, &	Per	form t	he prod	cess of	Filing,
	Demonstrate fitting tools and carpentry tools, & Perform the process of Filing, Chipping, Cutting.													
CO2					of fabr	rication	of tra	v. co	nes a	and	funnels	. Tee I	Halving	Cross.
			-					<i>J</i> ,				,		
	Laps	oınt N	Iarti	se & J	oints									
CO3				se & J		f wirin	gs and	othe	r eau	ipm	ents.			
CO3	Demo	nstrat	e va	rious t	ypes o	f wiring						nts		
CO4	Demo Meas	nstrat ure fu	e va	irious t mental	types o param	eters u	sing th	e ele	ctron		ents. Istrume	nts		
CO4 Mappin	Demo	onstrat ure fu ourse (e va ndar Dutc	nrious (mental come w	ypes o param ith Pro	eters u	sing th Outcom	e ele le (P	ctron Os)	ic in	strume		PO11	
CO4 Mappin Cos/PC	Demo	onstrat ure fu ourse (e va	irious t mental	types o param	eters u	sing th Outcom PO6	e ele	ctron Os) 7 P	ic in		PO10	PO11	PO12
CO4 Mappin Cos/PC CO1	Demo	onstrat ure fur ourse (ndar Outc	nrious (mental come w	ypes o param ith Pro	eters u	Sing the Dutcom PO6	e ele le (P	ctron Os) 7 P	08 3	PO9 3	PO10	PO11	PO12 3
CO4 Mappin Cos/PC CO1 CO2	Demo	onstrature furse (e va ndar Dutc	mental come w PO3	param ith Pro PO4	gram (PO5	sing th Outcom PO6	e ele ne (PO PO	ctron Os) 7 P	ic in	PO9	PO10	-	PO12
CO4 Mappin Cos/PC CO1	Demo	onstrat ure furse (ndar Outc O2	mental come w PO3	param ith Pro PO4 -	eters users users users users users users users and the experience of the experience	PO6 2 2	e ele ne (PO PO -	ctron Os) 7 P	08 3 2	PO9 3 2	PO10 3 2	-	PO12 3 2
CO4 Mappin Cos/PC CO1 CO2 CO3	Demo	onstrat ure furse (ndar Dutc D2 - 2	mental come w PO3	param ith Pro PO4	eters users	PO6 2 2 1	e ele e (PO PO	ctron Os) 7 P	08 3 2 3	PO9 3 2 2 2	PO10 3 2 2	- - -	PO12 3 2 2 2
CO4 Mappin Cos/PC CO1 CO2 CO3 CO4	Demo	onstrat ure furse (ndar Dutc D2 - 2	rious temental some we PO3	param ith Pro PO4	eters users	PO6 2 2 1	e ele e (PO PO	ctron Os) 7 P	08 3 2 3	PO9 3 2 2 2 2 2	PO10 3 2 2	- - -	PO12 3 2 2 2
CO4 Mappin Cos/PC CO1 CO2 CO3 CO4 COs/PSOs	Demo	onstrat ure furse (ndar Dutc D2 - 2	rious temental come w PO3	param ith Pro PO4	eters users	PO6 2 2 1 1 2 SO2	e ele e (PO PO	ctron Os) 7 P	08 3 2 3	PO9 3 2 2 2 2 2	PO10 3 2 2	- - -	PO12 3 2 2 2
CO4 Mappin Cos/PC CO1 CO2 CO3 CO4 COs/PSOs CO1	Demo	onstrat ure furse (ndar Dutc D2 - 2	rious temental come w PO3	param ith Pro PO4	eters users	PO6 2 2 1 1 2 SSO2	e ele e (PO PO	ctron Os) 7 P	08 3 2 3	PO9 3 2 2 2 2 2	PO10 3 2 2	- - -	PO12 3 2 2 2
CO4 Mappin Cos/PC CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2	Demo	onstrat ure furse (ndar Dutc D2 - 2	rious temental come w PO3	param ith Pro PO4	eters users	PO6 2 2 1 1 2 SSO2 1 1	e ele e (PO PO	ctron Os) 7 P	08 3 2 3	PO9 3 2 2 2 2 2	PO10 3 2 2	- - -	PO12 3 2 2 2
CO4 Mappin Cos/PC CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3	Demo Meas ag of Co os PO 3 3 3	onstrature furse (on 1 P(Dutce D2	rious temental rome we PO3	param ith Pro PO4	eters users	PO6 2 2 1 1 2 SSO2 1 1 1 1 1	e ele le (PO PO - - -	ctron Os) 7 P	08 3 2 3 - PS	PO9 3 2 2 2 2 2	PO10 3 2 2	- - -	PO12 3 2 2 2
CO4 Mappin Cos/PC CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4	Demo	onstrature furse (ourse	e vandar Outce O2 - 22 33 22 th O2	rious temental rome we PO3	param ith Pro PO4 Humanities	gram (PO5 - 1 1 1 1 I Program	Sing the Dutcom PO6 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1	e ele e (PO PO - - - -	ctron Os) 7 P	08 3 2 3 - PS	PO9 3 2 2 2 2 2	PO10 3 2 2 2 Internshi	- - -	PO12 3 2 2 2
CO4 Mappin Cos/PC CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4 3/2/1 India	Demo	onstrature furse (ourse	e vandar Outce O2 - 22 33 22 th O2	rious temental rome we PO3	param ith Pro PO4	gram (PO5 - 1 1 1 1 I Program	PO6 2 2 1 1 2 SSO2 1 1 1 1 h, 2- M	e ele e (PO PO - - - -	ctron Os) 7 P	08 3 2 3 - PS	PO9 3 2 2 2 503	PO10 3 2 2 2		PO12 3 2 2 2

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	C
BES18L01/	BASIC ENGINEERING WORKSHOP	Lb	0	0/0	2/0	1
BES20L01						

MEP PRACTICE

1. FITTING:

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints, half round joint, square cutting and dovetail joints.

2. CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

3. SHEET METAL:

Study of tools and equipments – Fabrication of tray, cones and funnels.

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipments
- 2. Preparation of plumbing line sketches for water supply and sewage lines
- 3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRICAL ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of an electrical equipment.
- 4. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 5. Fluorescent lamp wiring.
- 6. Stair case wiring

ELECTRONIC ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak- peak, rms period, frequency) using CRO
- 2. Soldering practice Components Devices and Circuits Using general purpose PCB

					Innovat			pren	eur				
Subject Code		·			TATION	T	y/	L		T/SLr		P/R	C
		O ENTE		IEURSI	HIP &	L	o /						
	P	ROJEC	ΓLAB			ET	TL						
BES18ET1/BES	S20ET1 P	rerequis	ite : Noi	ne		E	TL	0		0/0		2/0	1
L: Lecture T: T	Tutorial SL	: Super	vised Le	earning	P: Proje	ect R : I	Resea	rch C	: C	redits			
T/L/ETL: Theor	ry / Lab / E	mbedde	d Theor	y and L	_ab								
OBJECTIVES													
 Underst 	tand how	entrepre	neurshi	ip Edu	cation to	ransfor	ms i	ndivi	dua	ls into	success	ful lead	ers.
 Identify 	individua individua	al poten	tial &S	have o	areer di	reams							
 Underst 	tand differ	ence be	tween i	ideas &	oppor	tunities	S						
	compone												
•	instormin			-		S.							
COURSE OUT				<u> </u>									
Students comple				.o									
CO1	Develop	a Busi	ness pla	an & i	mprove	ability	to re	ecogi	nize	busine	ss oppo	ortunity	
CO2	Do a se	lf_analy	eie to h	uild an	entreni	reneuri	al ca	reer					
							ai ca	1001.					
CO3	Articula	ite an ef	fective	elevat	or pitch	l .							
CO4	Analyze	e the loc	al marl	ket env	vironme	nt & d	emor	ıstrat	e th	e abilit	y to fin	d an attr	activ
	market										-		
CO5													
	Identify	the req	uired sl	kills fo	r entrep	reneur	ship	& de	evel	op			
	Ţ.		•				ship	& de	evel	op			
Mapping of Co	Ţ.	me witl	•		tcome (ship PO7		evel 08	PO9	PO10	PO11	PO
Mapping of Co Cos/POs	urse Outco	ome witl	n Progr	am Ou	tcome (POs) PO6					PO10 2	PO11 2	PO 1
Mapping of Co Cos/POs CO1	urse Outco	ome with	PO3	am Ou PO4	tcome (I	POs) PO6	PO7	PO		PO9			1
Mapping of Co Cos/POs CO1 CO2	urse Outco	PO2	PO3	am Ou PO4	rtcome (I	POs) PO6	PO7 2	P	D8	PO9 2	2	2	1
Mapping of Co Cos/POs CO1 CO2 CO3	urse Outco	PO2 2 2	PO3 2 -	am Ou PO4 3	PO5 2 2	POs) PO6 2 3	PO7 2	P	D8 - 3	PO9 2 3	3	2	1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4	PO1 - 3 -	PO2 2 2 2 2	PO3 2 - 2	am Ou PO4 3 3	PO5 2 2 -	POs) PO6 2 3 3	PO7 2 2 -	P(D8 - 3	PO9 2 3 3 3	2 3 3	2 2 -	1 2 -
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5	PO1 - 3 - -	PO2 2 2 2 3	PO3 2 - 2 2 2	am Ou PO4 3 3 2 2	PO5 2 2 - 2 2 2	POs) PO6 2 3 2 2	PO7 2 2	P(O8 - 3 3 3 3 3 3	PO9 2 3 3 2 2	2 3 3 2	2 2 - 3	1 2 - - 1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5 CO5/PSOs	PO1 - 3 - -	PO2 2 2 2 3	Progr. PO3 2 - 2 2 2 2	am Ou PO4 3 3 2 2	PO5 2 2 - 2 2 2	POs) PO6 2 3 3 2 2	PO7 2 2	P(O8 - 3 3 3 3 3 3	PO9 2 3 3 2 2 2	2 3 3 2	2 2 - 3 3 3	1 2 - - 1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2	PO1 - 3 - -	PO2 2 2 2 3	PO3 2 - 2 2 2 PSO1	am Ou PO4 3 3 2 2	PO5 2 2 - 2 2 2	POs) PO6 2 3 3 2 2 SO2 1	PO7 2 2	P(O8 - 3 3 3 3 3 3	PO9 2 3 3 2 2 2 503	2 3 3 2	2 2 - 3 3 PSO4	1 2 - - 1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2	PO1 - 3 - -	PO2 2 2 2 3	Progr PO3 2 - 2 2 2 PSO1	am Ou PO4 3 3 2 2	PO5 2 2 - 2 2 2	POs) PO6 2 3 3 2 2 SO2	PO7 2 2	P(O8 - 3 3 3 3 3 3	PO9 2 3 3 2 2 503	2 3 3 2	2 2 - 3 3 PSO4	1 2 - - 1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4	PO1 - 3 - -	PO2 2 2 2 3	Progr. PO3 2 2 2 2 2 PSO1 1	am Ou PO4 3 3 2 2	PO5 2 2 - 2 2 2	POs) PO6 2 3 3 2 2 SO2 1	PO7 2 2	P(O8 - 3 3 3 3 3 3	PO9 2 3 3 2 2 503 1	2 3 3 2	2 2 - 3 3 PSO 4	1 2 - - 1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	PO1 - 3 - - -	PO2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Progr. PO3 2 2 2 2 2 PSO1 1 1 1 1 1 1 1 1	am Ou PO4 3 3 2 2 2 3	PO5 2 2 - 2 2 P	POs) PO6 2 3 3 2 2 SO2 1 1 1 1	PO7 2 23	P(O8 - 3 3 3 3 3 3	PO9 2 3 3 2 2 503 1	2 3 3 2	2 2 - 3 3 PSO 4 1 -	1 2 - - 1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5 SO3/PSOs CO4 CO5 SO3/PSOs CO4	PO1 - 3 - - -	PO2 2 2 2 3 2 Correlat	Progr. PO3 2 2 2 2 PSO1 1 1 1 1 tion, 3	am Ou PO4 3 3 2 2 2 3	PO5 2 2 - 2 2 P	POs) PO6 2 3 3 2 2 SO2 1 1 1 1	PO7 2 23	P(O8 - 3 3 3 3 3 3	PO9 2 3 3 2 2 503 1 - 1	2 3 3 2	2 2 - 3 3 PSO 4 1 -	1 2 - - 1
Mapping of Co Cos/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	PO1 - 3 - - -	PO2 2 2 2 3 2 Correlat	Progr. PO3 2 2 2 2 PSO1 1 1 1 1	am Ou PO4 3 3 2 2 2 3	PO5 2 2 2 2 2 P	POs) PO6 2 3 3 2 2 SO2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO7 2 2 - 3 Low n Op	P(D8 33 33 33 P8	PO9 2 3 3 2 2 503 1 - 1	2 3 3 2 2 2	2 2 - 3 3 PSO 4 1 -	1 2 - - 1

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BES18ET1/BES20ET1	ORIENTATION TO ENTREPRENEURSHIP &	ETL	0	0/0	2/0	1
	PROJECT LAB			3,0	_, 0	

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

3 Hrs

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes

UNIT II ENTREPRENEURIAL STYLE 3 Hrs

Entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

UNIT III DESIGN THINKING

3 Hrs

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

UNIT IV RISK MANAGEMENT 3 Hrs

Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT 3 Hrs

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

Total Hours:15

SEMESTER – II DEPARTMENT OF MATHEMATICS

				Dr	EPARTN	MEN I	OF N	<u> </u>	HEWL	<u>A I I C</u>	<u> </u>			
Subject	Code			Subjec	t Name	:		Ty/	L		T/SLr		P/R	С
			\mathbf{M}	ATHE	MATIC	S-II		Lb/						
								ETL						
BMA18	003/	Pre	requi	site : N	lone			Ty	3		1/0		0/0	4
BMA20	003		-					-						
L : Lect	ure T :	Tutori	ial SI	r : Sup	pervised	Learnir	ng P: 1	Proje	ct R:	Resea	arch C:	Credits		
T/L/ETI	: Theo	ory / L	Lab /]	Embed	ded The	ory and	Lab							
OBJEC	TIVES					-								
•	Unders	stand	the I	Basic c	concepts	s in Int	egrat	ion						
					cepts in		_		ls					
		•			s in Ord	-		_		ation	S			
				-	pts of A	•			-		.5			
					cepts of	•			•					
COURS						1 0010	. Cul	Cara	,					
Students						e to								
CO1							hods	of in	teorat	ion a	nd to fir	nd the a	rea unde	r curve
COI	_	_			id by rev	_		01 111	iograi	ion u	na to m	ia the a	rea anac	curve
CO2					itegrals /			e and	l to ch	ange	the orde	r of inte	gration.	
CO3					erential e									
CO4				•		_							ance betv	veen to
	skew		100000	o. p	101100, 111		орт				511011	030 01300		, 0011 00
CO5	Find t	he gra	adien	t, max	imum di	rection	al der	ivati	ve and	l wor	k done	y a for	ce and to	verify
	Green	/ Stok	ces/ C	auss d	livergenc	e theor	em					•		·
Mappin	g of Co	urse	Outo	ome w	vith Prog	gram C)utco	me (l	POs)					
Cos/PC	os PC)1 P	PO2	PO3	PO4	PO5	PO6	6 P	O7	PO8	PO9	PO10	PO11	PO12
CO1	3		3	1	1	2	2		-	-	2	2	-	3
CO2	3		3	2	1	2	3		-	-	3	3	-	2
CO3	3		3	2	2	2	3		1	-	3	3	-	2
CO4	3		3	2	1	1	2		-	1	2	3	1	2
CO5	3		3	2	2	2	2		1	1	2	3	1	2
COs/PSOs	•		L.	PSO1		F	PSO2	•		P	SO3		PSO ₂	Į.
CO1				2			3				1		1	
CO2				2			3				1		-	
CO3	CO3 2										1		1	
CO4				2			3				1		1	
CO5				2			3				1		1	
3/2/1 Inc	dicates	Streng	gth O	f Corre	elation, 3	3 – High	n, 2- N	Mediu	ım, 1-	Low				
Category	Basic			Science	Humanities	Prograi	m Pro	ogram	Open	Prac	ctical/Project		ips/Technical	Soft
	Scien	ces			& social Science	Core	Ele	ective	Elective	;		Skills		Skills
		$\sqrt{}$												

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BMA18003/ BMA20003	MATHEMATICS – II	Ту	3	1/0	0/0	4

UNIT I INTEGRATION

Basic concepts of Integration - Methods of Integration- Integration by substitution - Integration by parts - Definite integrals – Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

MULTIPLE INTEGRALS

12 Hrs

Double integral in Cartesian and Polar Co-ordinates - Change of order of integration - Triple integral in Cartesian Coordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

ORDINARY DIFFERENTIAL EQUATIONS **3UNIT III**

12 Hrs

First order differential equations - Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

UNIT IV THREE DIMENSIONAL ANALYTICAL GEOMETRY

12Hrs

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Co-planar lines - Shortest distance between skew lines - Sphere - Tangent plane.

UNIT V VECTOR CALCULUS

12 Hrs

Scalar and Vector functions - Differentiation - Gradient, Divergence and Curl - Directional derivatives - Irrotational and Solenoidal fields—Line, Surface and Volume integrals—Green's, Stoke's and Gauss divergence theorems (statement only)— Verification.

Total Hours: 60

TEXTBOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

	DEPARTMENT OF PHYSICS											
Subject Code	Subject Name : ENGINEERING	Ty/	L	T/SLr	P/R	С						
	PHYSICS - II	Lb/										
		ETL										
BPH18002/	Prerequisite : None	Ту	2	0/1	0/0	3						
BPH20002												
L: Lecture T: T	Tutorial SLr: Supervised Learning P	P: Projec	t R : Re	search C : Cı	redits							
T/L/ETL: Theo	ry / Lab / Embedded Theory and La	b										
OBJECTIVES												
 Design. 	. conduct experiment and analyze	e data.										

- Develop a Scientific attitude at micro and nano scale of materials
- Understand the concepts of Modern Physics
- Apply the science of materials to Engineering & Technology

COURSE OUTCOMES (Cos): (3 – 5)

Cos/POs

Students completing this course were able to

CO1	Demonstrate skills necessary for conducting research related to content knowledge and
	laboratory skills.
CO2	Apply knowledge and concepts in advanced materials and devices.
CO3	Acquired Analytical, Mathematical skills for solving engineering problems.
CO4	Ability to design and conduct experiments as well as function in a multi disciplinary teams

PO9

PO10 | PO11 | PO12

Generate analytical thought to interpret results & place them within a broader context **CO5**

PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |

Mapping of Course	Outcome with Program	Outcome (POs)
-------------------	----------------------	---------------

CO1	3	3	2	2	2	1	1	-	-	2	-	1
CO2	3	3	1	2	2	1	1	-	1	2	-	1
CO3	3	3	3	3	2	2	2	1		2	1	1
CO4	3	3	3	3	2	2	1	1	3	2	1	1
CO5	3	2	2	2	2	1	1	1	2	2	1	1
COs/PSOs			PSO1]	PSO2		PS	SO3		PSO	4
CO1												
			1			3			1		1	
CO2			1 1			3			1		1	
			1 1 1			3 3			1 1 2		1 1 1	
CO2			1 1 1 1			3 3 1			1 1 2 2		1 1 1 2	

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

Category	Basic Sciences	Engg.Science	Humanities & social Science	Program Core	Program Elective	Open Elective	Practical/Project	Internships/Technical Skills	Soft Skills
	$\sqrt{}$								

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BPH18002/ BPH20002	ENGINEERING PHYSICS - II	Ту	2	0/1	0/0	3

UNIT I QUANTUM PHYSICS

9 Hrs

Quantum free electron theory - deBroglie waves - derivation of deBroglie waves - Davisson and Germer experiment - uncertainty principle - electron microscope - scanning electron microscope - physical significance of wave function - Schrodinger wave equation and its applications - Fermi energy- effective mass - phonons - Fermi function-density of states - origin of bandgap in solids - 1D scattering of electrons in periodic potential.

UNIT II SEMICONDUCTORS

9 Hrs

Introduction - properties of semiconductors - classification of semiconductor - effect of temperature in semiconductor - hole current - carrier concentration in intrinsic semiconductor (electron and hole density) - variation of Fermi energy level and carrier concentration with temperature in an intrinsic semiconductor - carrier transport - diffusion - drift - mobility - Hall effect - determination of Hall coefficient and its applications - diodes.

UNIT III LIGHT SEMICONDUCTOR INTERACTION

9 Hrs

Types of electronic materials: metals, semiconductors and insulators - qualitative analysis of extrinsic semiconductor & its applications - optical transition in bulk semiconductors: absorption, spontaneous and stimulated emission - exciton and its types - traps and its types - colour centers and its types and importance - luminescence - classifications of luminescence based on excitation - optical loss and gain - Photovoltaic effect - Photovoltaic potential - spectral response - solar energy converters - solar cells.

UNIT IV OPTO ELECTRONIC DEVICES

9 Hrs

Photodetectors - photoconductors - photodiodes principle, construction, working and characteristics - Phototransistors - Laser diodes - LED theory, construction and working - seven segment display, advantages of LED - LCD theory, construction and working.

UNIT V ENGINEERED MATERIALS

9 Hrs

Classification of engineered materials - nano phase materials - its synthesis and properties - shape memory alloys and its applications - biomaterials - non linear materials - metallic glasses - metamaterials - homo and hetero junction semiconductors - semiconducting materials for optoelectronic devices - quantum wells, wires and dots.

Total Hours: 45 Hrs

TEXT BOOKS:

- 1. P.K. Palanisamy, Semiconductor Physics and Optoelectronics, Scitech Publications, 2010
- 2. Jyoti Prasad Bandyopadhyay, Semicoductor Devices, S. Chand Publications, 2014
- 3. Charles Kittal, Introduction to Solid State Physics, Wiley Publications, 2012

- 1. S. Shubhashree, S. Bharathi Devi & S. Chellammal Madhusudanan, Engineering Physics, Sree Lakshmi Publications, 2004
- 2. G. Senthil Kumar, N. Iyandurai, & G. Vijayakumar, Material Science, VRB Publishers, 2017
- 3. R.Murugeshan & Kiruthigasivaprakash, Modern Physics, 14th edition, S. Chand & Co, 2008
- 4. Pallab Bhattacharya, Semiconductor optoelectronic devices, second edition, Pearson Education, 2003
- 5. V Rajendran & A. Marikani, Materials Science, Tata McGraw- Hill, New Delhi, 2004

DEPARTMENT OF CHEMISTRY

Subject Code	Subject Name:	Ty/	L	T/SLr	P/R	С
	ENGINEERING	Lb/				
	CHEMISTRY - II	ETL				
BCH18002/	Prerequisite : None	Ту	2	0/1	0/0	3
BCH20002						

 $L: Lecture \ T: Tutorial \ SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES

- Imparting the basic concepts of phase rule and apply the same to one and two component systems.
- Introducing the chemistry of engineering materials such as cement, lubricants, abrasives, refractories, alloys and nano materials.
- To impart a sound knowledge on the principles of chemistry involving different application-oriented topics
- Introducing salient features of fuels and combustion.
- To give an overview on modern analytical techniques

COURSE OUTCOMES (Cos): (3 – 5)

Students completing this course were able to

C	O1	Understand the science of phase equilibria and apply the phase rule to different systems.
C	O2	Gain an overview of Engineering Materials such as Lime, Cement, Lubricants, Abrasives,
		Refractories, Alloys and Nanomaterials.
\mathbf{C}	Ω_3	Paccomize the assential information about consumer products such as Soons and Determine

- Recognize the essential information about consumer products such as Soaps and Detergents, also gaining the basic knowledge about Explosives and Propellants.
- CO4 Discover the fuel Chemistry and Combustion process.
- CO5 Inferring few important Analytical Techniques and their applications.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	3	3	-	-	-	-	-	-	-	3
CO2	3	3	-	3	3	-	3	-	-	3	-	3
CO3	3	3	3	-	-	3	-	3	-	-	-	3
CO4	3	-	-	-	-	-	3	-	-	3	-	3
CO5	3	-	3	-	3	•	-	-	-		-	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
CO1	-	3	-	-
CO2	-	3	-	-
CO3	-	3	-	-
CO4	-	3	-	-
CO5	-	3	-	-

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

Cate	egory	Basic Sciences	Engg.Science	Humanities & social Science	Program Core	Program Elective	Open Elective	Practical/Project	Internships/Technical Skills	Soft Skills
		$\sqrt{}$								

Subject Code:	Subject Name :	Ty/Lb/ETL	L	T/ SLr	P/R	С
BCH18002/		Tv	2	0/1	0/0	3
BCH20002	ENGINEERING CHEMISTRY – II	ı y	2	0/1	0/0)

UNIT I PHASE EQUILIBRIA

8 Hrs

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb – Ag system, Bi – Cd system .Thermal analysis – Cooling curves.

UNIT II MATERIAL CHEMISTRY

10 Hrs

Cement – Manufacture, Chemistry of setting and hardening .Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples. Abrasives–Classification –Moh's scale-Hard and soft abrasives, Preparation of artificial abrasives (silicon carbide, boron carbide), Applications of abrasives. Refractories – Classification, Properties-Refractoriness, RUL, Porosity, Thermal spalling Alloys Classification of alloys – Purpose of making alloys – Ferrous and non-Ferrous alloys – Heat treatment Nano materials – properties, carbon nano tubes – properties, fabrication – carbon arc method, laser vapourization method.

UNIT III APPLIED CHEMISTRY

9 Hrs

Soaps and detergents: Soaps – Saponification of oils and fats, manufacture of soaps, classification of soap – soft soap, medicated soap, herbal soap, shaving soap and creams.

Detergents – Anionic detergents – manufacture and applications, Comparison of soaps and detergents.

Rocket propellants and explosives: Rocket propellants – characteristics, solid and liquid propellants – examples. Explosives-Introduction, characteristics, classification, Oxygen balance, preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite.

Food adulterants- Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

UNIT IV FUELS & COMBUSTION

9 Hrs

Introduction to Fuels – classification – Calorific value – GCV, LCV.Solid Fuels—Coal-Proximate Analysis, Metallurgical Coke—Manufacture of Metallurgical Coke – Liquid Fuel—Refining of Petrol, Synthetic Petrol—Manufacturing Process—Hydrogenation of Coal, Polymerization, Cracking—Knocking—Octane Number—Leaded Petrol (or) Anti—knocking – Cetane Number—Ignition Lag—Gaseous fuels—CNG—LPG—Water Gas, Producer gas—Biogas- Combustion— Flue Gas analysis—Orsat's method.

UNIT V ANALYTICAL AND CHARACTERIZATION TECHNIQUES

9 Hrs

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications Absorption and Emission Spectrum - Beer - Lambert's law. Visible and UV Spectroscopy – instrumentation – Block diagram – working. IR Spectroscopy – instrumentation - Block diagram – molecular vibrations – stretching and bending – H₂O, CO₂. –Characterization of some important organic functional groups. Chromatographic techniques – column, thin layer and paper.

Total Hours: 45

TEXTBOOKS:

- 1. C. S.Unnithan, T. Jayachandran P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. B. R. Puri ,L.R. Sharma &M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

DEPARTMENT OF ENGINEERING SCIENCES

Subject Co	-				01 21	1011121		CIENC					~
		Subject							Ty/	L	T /	P/R	C
BES18003			ENV			L SCIE			Lb/		SLr		
BES20003				•	Credit	Course)			ETL	,			
		•	site : Non						Ty	-	-	-	-
	T: Tutoria					roject R	: Resear	ch C: C	redits				
T/L/ETL:	Theory / La	ab / Embed	dded The	ory and	Lab								
OBJECTI	IVES:												
•	To acquire	e knowled	ge of the	Enviror	nment a	nd Ecos	ystem &	Biodiver	sity				
•	To acquire		_		• •	of Envi	onmenta	l pollutio	on				
•	To know i	more abou	t Natural	Resour	ces								
•	To gain u	nderstandi	ng of soc	ial issue	es and th	ne Envir	onment						
•	To attain t	familiarity	of huma	n popula	ation an	d Envir	onment						
COURSE	OUTCOM	IES (Cos)	: (3 – 5)										
Students co	ompleting tl	he course	were able	to									
CO1	To known a	about Envi	ronment	and Eco	osystem	& Biod	iversity						
CO2	To clearly of	comprehei	nd air, wa	iter, Soi	l, Marin	ne, Noise	e, Therm	al and N	uclear Po	ollutio	ns and	Solid V	Vaste
	managemer	nt and ide	ntify the	importa	nce of n	atural re	esources	like fore	st, water,	and f	ood res	ources	
CO3	To discover	r water co	nservatio	n and w	atershe	d manag	gement						
	To identify							warmin	g, acid ra	in, oz	one lay	er dep	letion
	etc.,	•									•	•	
CO5	To explain	family v	velfare p	rogramı	nes and	d role	of infor	mation t	echnolog	gy in	human	health	and
	environmer	nt											
Mapping of	of Course (with Pro	gram (Outcom	es (POs)						
Mapping of COs/POs	of Course (PO1		with Pro	gram (Outcom PO5	es (POs) PO7	PO8	PO9	PO1	0 PO	11 I	PO12
	1	Outcomes						PO8 2	PO9	PO1	0 PO		PO12 2
COs/POs CO1	PO1	PO2	PO3	PO4	PO5	PO6 2	PO7 3		1	-			2
COs/POs CO1 CO2	PO1	PO2	PO3 -	PO4 -	PO5	PO6 2 2	PO7 3 3	2	1	2			2 2
COs/POs CO1 CO2 CO3	PO1	PO2	PO3	PO4	PO5	PO6 2 2 2	PO7 3 3 3	2 - 2	-	2	-		2 2 2
COs/POs CO1 CO2 CO3 CO4	PO1	PO2	PO3	PO4	PO5	PO6 2 2 2 2	PO7 3 3 3 3	2 - 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5	PO1	PO2	PO3	PO4	PO5	PO6 2 2 2 2 2 2	PO7 3 3 3 3 3	2 - 2 2 2	-	2	-		2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs	PO1	PO2	PO3 PS0	PO4	PO5	PO6 2 2 2 2	PO7 3 3 3 3 3	2 - 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs	PO1	PO2	PO3	PO4	PO5	PO6 2 2 2 2 2 2	PO7 3 3 3 3 3	2 - 2 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs	PO1	PO2	PO3 PS0	PO4	PO5	PO6 2 2 2 2 2 2	PO7 3 3 3 3 3	2 - 2 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2	PO1	PO2	PO3 PSC	PO4	PO5	PO6 2 2 2 2 2 2	PO7 3 3 3 3 3	2 - 2 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3	PO1	PO2	PO3 PSC 3 3 3	PO4	PO5	PO6 2 2 2 2 2 2	PO7 3 3 3 3 3	2 - 2 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4	PO1	PO2	PO3 3 3 3 3 3	PO4	PO5	PO6 2 2 2 2 2 2	PO7 3 3 3 3 3	2 - 2 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	PO1	PO2 O1	PO3 3 3 3 3 3 3	PO4	PO5 PS	PO6 2 2 2 2 2 2 03	PO7 3 3 3 3 7 PS	2 - 2 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	PO1	PO2 O1	PO3 3 3 3 3 elation, 3	PO4	PO5 PS	PO6 2 2 2 2 2 2 03	PO7 3 3 3 3 7 PS	2 - 2 2 2		- 2 - 2	- - -		2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	PO1	PO2 O1	PO3 3 3 3 3 elation, 3	PO4	PO5 PS - , 2- Med	PO6 2 2 2 2 2 2 03	PO7 3 3 3 3 7 PS	2 - 2 2 2		- 2 - 2			2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5 SO3 CO4 CO5 3/2/1 Indic	PO1 PS - ates Strenge	PO2 O1 th Of Corr	PO3 3 3 3 3 elation, 3	PO4	PO5 PS - , 2- Med	PO6 2 2 2 2 2 03 dium, 1-	PO7 3 3 3 3 7 PS	2 2 2 2 04		- 2 - 2	/ SO		2 2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indic	PO1 PS - ates Strenge	PO2 O1	PO3 3 3 3 3 elation, 3	PO4	PO5 PS - , 2- Med	PO6 2 2 2 2 2 03 dium, 1-	PO7 3 3 3 3 PS	2 2 2 2 04	· · · · · · · · · · · · · · · · · · ·	- 2 - 2	ships /		2 2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5 SO3 CO4 CO5 SO3 CO4 CO5 SO3/2/1 Indic	PO1 PS - ates Strenge	PO2 O1	PO3 3 3 3 3 elation, 3	PO4	PO5 PS - , 2- Med	PO6 2 2 2 2 2 03 dium, 1-	PO7 3 3 3 3 PS	2 2 2 2 04	· · · · · · · · · · · · · · · · · · ·	- 2 - 2	ships /		2 2 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	PO1	PO2 O1	PO3 3 3 3 3 3 3	PO4	PO5 PS - , 2- Med	PO6 2 2 2 2 2 2 03	PO7 3 3 3 3 7 PS	2 - 2 2 2		- 2 - 2	ships /		2 2 2 2

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BES18003/	ENVIRONMENTAL SCIENCE	Ty	-	-	-	-
BES20003						

UNIT I ENVIRONMENT AND ECOSYSTEM

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

UNIT II ENVIRONMENT POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents ,central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

TEXT BOOKS:

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

- 1. Vairamani, S. and Dr. K. Sankaran. **Elements of Environmental and Health Science.** Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. Ifthikarudeen, Etal, **Environmental Studies**, Sooraj Publications, 2005.
- 3. R.Murugesan, **Environmental Studies**, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

DEPARTMENT OF ENGLISH

			DE	PARTN	MENT C)F EN	GLISI	Ŧ				
Subject Code			3	t Name			'y/	L	T/SLr		P/R	C
		COM	MUNI	CATIO	N LAB	L	b/					
						E	ΓL					
BEN18ET1/BEN20		Prerequi				E			0/0	2/0		1
L : Lecture T : Tuto				_	, ,	ect R:	Resea	rch C:	Credits			
T/L/ETL : Theory /	Lab / E	mbedde	ed Theo	ry and I	Lab							
OBJECTIVES												
The Student should	be able	to										
 Use appropri 						ctive in	terper	sonal ar	nd acade	mic com	ımunicat	ion
 Interpret characters 		-										
 Participate i 				•	ent projec	ct effec	ctively					
 Present proj 		ideas e	ffective	ely								
Attend inter												
COURSE OUTCO												
Students completing												
			vocat	oulary	and str	ucture	for e	effective	e interp	ersonal	and ac	ademi
CC	mmuni	cation										
CO2 In	torprot	ohorte .	dinaron	ng advo	rtisemen	ts oto						
	nerpret (charts,	Jiagi aii	is, auve	HUSCHICH	us, eu.	,					
CO3 Pa	articinat	e in orc	un disc	nesions	and pres	sent pr	oiect e	ffective	1v			
	articipat	o m gr	up disc	assions	and pre-	sem pr	oject c	11001110	, 1 y			
CO4 Pi	resent p	roject a	nd idea	s effecti	vely							
	1	3			,							
CO5 A	ttend in	terview	S									
Mapping of Course	- Outco	me wit	h Prog	ram ()ı	ıtcome ((POc)						
Cos/POs	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	-	-	-	_	3	-	-	-	-	3	3	3
CO2	3	2	_	3	3	_	3	<u> </u>	_	3	2	3
CO3	3	3	3	3		3	3		3	3	3	3
					-			-				
CO4	2	3	3	3	-	-	-	3	3	3	-	3
CO5	-	<u> </u>	-	-	-	2	3	3	3	3	3	3
COs/PSOs			PSO1		P	SO2		P	SO3		PSO ₂	1
CO1			1			3			1		1	
CO2			1			3			1		1	
CO3			1			3			1		1	
CO4			1			3			1		1	
CO5			1			3			-		-	
3/2/1 Indicates Stren	ngth Of	Correla	tion, 3	<u> </u>		ium, 1-	Low					
Category	Basic Sciences	Engg	.Science	Humanities & social	Program Core	n Progra Electi	-	n Pra	ctical/Projec	t Internshi	ips/Technical	Soft Skills
	Beieffees			Science	Core	Electi	ve Ele	LUVU		SKIIIS		Skiils
-				- 1								

Subject Code:	Subject Name :	Ty/Lb/ ETL	L	T/ SLr	P/R	С
BEN18ET1/ BEN20ET1	COMMUNICATION LAB	ETL	1	0/0	2/0	1

UNIT I 6HRS

Listening and Speaking- Informal and Formal Contexts\

UNIT II 6HRS

Interpretation of charts/ Diagrams – Group Discussion

UNIT III 6HRS

Compeering – Anchoring – Welcome Speech – Vote of Thanks

UNIT IV 8HRS

Formal Presentation - Power point presentation - Poster Presentation

UNIT V 4HRS

Interview

Total Hours: 30

SUGGESTED READINGS:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan. 2007
- (iii)On Writing Well.William Zinsser.Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and Pushp Lata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press
- (vi) Pronunciation in Use ,Mark Hancock. Cambridge University Press. 2012

DEPARTMENT OF MECHANICAL ENGINEERING

T/SLr

P/R

Subject Name: BASIC

Subject Code

•		ENĞIN	EERIN	IG GRA	PHICS		b/							
BES18ET2/BES20ET	72	Prerequ	iisite · l	Vone			TL TL	1	0	/0	,	2/0		2
L : Lecture T : Tutoria					Project						1		ETL : T	
/ Lab / Embedded The		•	ou Dou	innig i .	Troject		bocai	cii e .	CIC	arts		1/1/1	BIL. I	neory
OBJECTIVES	cory and i													
Learn to know	v what ki	ind of r	encile	to he us	ed to sk	retch li	nec	numbe	ore l	Letters and	Dime	encioni	ing in d	rawing
sheet.	w what Ki	ind of p	CHCHS	io oc us	cu to si	cten m	ncs,	numo	13, 1	Letters and	ווווע	211310111	ing in u	rawing
 Draw Project 	ion of noi	ints lin	e nlane	e and s	olide ne	ino Dra	fter	c						
 To identify t 									iso	metric pro	iectio	n and	Orthog	oranhic
projection	ine ungre	or pro	ojection.	i ana a	сусторт	nent o	ı su	maccs,	150	metric pro	jeeno	'II alla	Orthog	51 apine
Know the bas	ics of ele	vation	and nla	n of bui	lding									
 Learn the bas 			_		_	are								
COURSE OUTCOM			21118 1 1		2010111									
Students completing t			able to											
CO1				Enginee	ring Gr	aphics '	Tecl	hnique	s to	draft letter	s, Nui	mbers,	Dimens	sioning
	in Indian	Standa	ards					-						
CO2	Demonst	trate th	e drafti	ng prac	tice visi	ualizati	on a	and pro	oject	ion skills u	ıseful	for co	onveying	g ideas
	in engine													
CO3	Identify													
CO4	Demonst													
CO5					•					o CAD Sof				
CO6	Utilize tl in Indian			Enginee	ring Gr	aphics '	Tecl	hnique	s to	draft letters	s, Nur	nbers,	Dimens	sioning
Mapping of Course	Outcome	with F	rograi	n Outc	ome (Po	Os)								
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PC)7 P	08	PO9	PO1	0	PO11	PO12
CO1	3	3	3	3	2	2	-	-	-	3	3	;	1	3
CO2	3	3	3	3	2	2	-	-	-	3	3	;	1	3
CO3	3	3	3	1	2	2	-	-	-	2	2)	1	2
CO4	3	3	2	2	2	3	1		2	3	3	;	1	3
CO5	3	3	3	2	3	1	2	2	2	3	3	;	1	3
CO6	3	3	3	1	3		2	2	1	2	2	2	1	3
COs/PSOs	I	PSO1			PSO2				P	SO3			PSO4	ļ
CO1		1			2					1			1	
CO2		1			2					1			1	
CO3		1			2					1			1	
CO4		1			3					1			1	
CO5		1			3					1			1	
CO6		1			3					1			1	
3/2/1 Indicates Streng	th Of Co	rrelatio	n, 3 – F	High, 2-	Mediur	n, 1- L	ow							
Category	Basic Science	Engg	.Science	Humanities & social Science			am	Open Elective	Prac	tical/Project	Inte Skil	ernships/Te lls	echnical	Soft Skills
			.1	Scionico										+

Subject Code:	Subject Name :	Ty/Lb/ETL	L	T/ SLr	P/R	C
BES18ET2/BES20ET2	BASIC ENGINEERING GRAPHICS	ETL	1	0/0	2/0	2

UNIT ICONCEPTS AND CONVENTIONS (Not for examination)

3Hrc

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS: 15021 – 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cyloids.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

6 Hrs

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT III PROJECTION OF SOLIDS

6 Hrs

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to one reference plane and perpendicular to the other.

UNIT IV DEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION

6 Hrs

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones. Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT V ORTHOGRAPHICS PROJECTIONS

6 Hrs

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

Building components – front, Top and sectional view of a security shed.

UNIT VI COMPUTER AIDED DRAFTING

3 Hrs

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software.

Total Hours:30

Note: First angle projection to be followed.

TEXT BOOKS:

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

REFERENCE BOOKS:

- 1. Natarajan, K.V (2014) A Text Book of Engineering Graphics, DhanalakshmiPublisheres, Chennai
- 2. Venugopal, K and Prabhu Raja, V. (2010) Engineering Graphics, New Age International (P) Limited

Special Points applicable to University examinations on Engineering Graphics

- 1. There will be five questions, each of either or type covering all UNIT-s of the syllabus
- 2. All questions will carry equal marks of 20 each making a total of 100
- 3. The answer paper shall consists of drawing sheets of A2 size only. The students will be permitted to use appropriate scale to fit solution within A2 size.

T/SLr

P/R

C

Subject Name: INTEGRATED

Subject Code

Subject Code				ENCE I			y/	L	1/SLI		1 / 1	
	PI	HISICA	AL SCH	ENCE L	AB		Lb/ TL					
BES18L02/BES20L	02 Pr	ereauis	ite : No	ne			Lb	0	0/0		2/0	1
L : Lecture T : Tutor					P: Pro			rch C:				/ETL
Theory / Lab / Embe		_				J						
OBJECTIVES												
• Demonstrat	e the a	ability	to mak	e phys	ical me	easurer	nents	& unde	erstand	the limi	ts of pre	cisio
in measure		•		1 ,								
• Display the		tv to n	neasur	e prope	erties d	of vari	etv of	mecha	mical	ontical	electric	al and
electronic s		•	ncasar	c prop		or vari	cty O1	meene	iiicai,	opticai,	Ciccuito	ai ain
	•		1.		1 17	ME	1	4!1	:	4		
• To help lear				-			•					
• To understa		•			_		ograp	hy & vi	iscomet	ry		
 To familiar 	ize the	conce	pts of o	chem 11	ntorma	tics						
COURSE OUTCO	MES (Cos): (3-5)									
Students completing												
CO1 R	ecogni	ze the	correct	tness ar	nd prec	ision ii	n the r	esults c	of meas	urement	S.	
CO2 Co	onstru	ct and	compa	re the	nroner	ties of	varie	ty of n	nechani	cal ont	ical, ele	ctrica
			•		proper	ties of	varie	ty 01 11	псспат	cui, opi	icai, cic	Ctricu
an	id elec	tronic s	system	ıs.								
CO3 Fa	miliar	izing tl	he titra	tion me	ethods	using o	condu	ctometr	y & po	tentiom	etry	
											natics &	
	-	al skill		1		υ		υ				
Mapping of Course				ram O	utcome	(POs)						
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	3	3	1	3	3	1	1	-	1	2	-	1
CO2	3	3	2	3	3	2	1	-	1	2	1	1
CO3	3	3	2	3	3	-	-	-	3	-	-	-
CO4	3	3	3	3	3	-	2	2	3	-	3	2
COs/PSOs			PSO1]	PSO2		P	SO3		PSO ²	1
CO1			1			3			1		1	
CO2			1			3			1		1	
CO3						_			-			
CO4			_			3			-		1	
3/2/1 Indicates Stren												
Category	Basic Sciences	Engg	.Science	Humanitie & social	s Progra Core	m Progr Electi		en Pra	ctical/Projec	t Internshi	ps/Technical	Soft Skills
	Jointees			Science	Cole	Licot	Li			DKIII3		DKIIIS
	2				ı	1	1	1		1		1

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BES18L02/BES20 L02	INTEGRATED PHYSICAL SCIENCE LAB	Lb	0	0/0	2/0	1

LIST OF EXPERIMENTS

- 1. Determination of Coefficient of Viscosity of a given liquid by Poiseuille's method.
- 2. Particle Size determination using Laser Source.
- 3. Determination of Numerical Aperture of an Optical Fiber.
- 4. Spectrometer- Refractive Index/Dispersive power/i-d curve.
- 5. Potentiometer Resistance of a wire.
- 6. Transistor Characteristics Input Resistance, Output Resistance and Gain .
- 7. Studies on acid-base conductometric titration.
- 8. Determination of redox potentials using potentiometry.
- 9. Determination of R_fvalues of various components using thin layer chromatography.
- 10. Viscosity studies using Digital capillary viscometer.
- 11. Compute the structures of the given polymers, drugs, biomolecules using Chem Draw.
- 12. Studies on potential energy surface of the given molecules.
- 13. Estimate NMR spectra from a Chem Draw structure.

DEPARTMENT OF COMPUTER SCIENCE

			ject Na					Ty/		L	T/SLr		P/R	С
		C PI	ROGRA	AMMING	& LAI	3		Lb/						
Subject Co	ode							ETI	٠					
BES18ET3/BES20	DET3	Prer	equisite	e : None				ETI	,	1	0/0		2/0	2
L: Lecture T: Tut	orial SI	Lr : S	Supervi	sed Lear	ning P:	Project	R :	Resea	rch (C: Cred	lits			
T/L/ETL: Theory	/ Lab /	Eml	bedded	Theory a	and Lab)								
OBJECTIVES														
Outline th	ne basio	cs of	f C Laı	nguage.										
Apply fur	ndamen	ntals	in C p	rogrami	ning.									
• Produce a						with th	e co	ourse.						
COURSE OUTC	OMES	(Co	s): (3 -	- 5)										
Students completing	ng this c	cours	se were	able to										
CO1	Acquir	e kn	owledg	ge how to	write a	and exec	cute	c prog	gram	S				
CO2	Unders	stand	the fu	ndamenta	al expre	ession a	nd st	tateme	ents o	of C La	nguage.			
CO3	Work v	with	arrays,	function	s, point	ers, stru	uctui	res, St	rings	and F	les in C			
CO4	Identif	y an	d provi	de soluti	ons for	enginee	ring	prob	lems	in C pı	ogramn	ning		
Mapping of Cour								_		_				
Cos/POs	PO1	1	PO2	PO3	PO4	PO5	PC)6 I	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3	3	2	2	2	2	1		3	3	1	3
CO2	3		3	3	2	2	2	2	1		3	3	1	3
CO3	3		3	3	1	1	2	2	1		2	2	1	2
CO4	3		3	2	2	1	3	3	1	2	3	3	1	3
COs/PSOs			PSO1			PS	O2			P	SO3		PSO	4
CO1			3			3	3				2		2	
CO2			3			3	3				2		2	
CO3			3			3	3				2		2	
CO4			3			3	3				2		2	
3/2/1 Indicates Str	ength O	of Co	orrelatio	on, 3 – H	igh, 2-]	Mediun	n, 1-	Low		-				
Category		Basic Science		ngg.Science	Humanitie & social	es Progra		Program Elective	Ope Elec		ctical/Projec	t Internshi	ps/Technical	Soft Skills
		Selen			Science	Cole		Licenve	Lice	10		SAIIIS		Skiiis
											√			

Subject Code:	Subject Name :	Ty/Lb/ ETL	L	T/ SLr	P/R	С
BES18ET3/BES 20ET3	C PROGRAMMING AND LAB	ETL	1	0/0	2/0	2

UNIT I INTRODUCTION

6Hrs

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

UNIT II EXPRESSION AND STATEMENT

6 Hrs

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

UNIT III ARRAYS AND FUNCTIONS

6 Hrs

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls -Function pass by reference, Write a Program in Recursive Function.

UNIT IV STRUCTURES AND POINTERS

6Hrs

Working with Structures -Introduction -Syntax of structures -Declaration and initialization -Declaration of structure variable -Accessing structure variables, Understanding Pointers -Introduction -Syntax of Pointer.

UNIT V STRINGS AND FILE HANDLING

6 Hrs

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard, Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

Total Hours: 30

- 1. www.spoken-tutorials.org
- 2. http://www.learn-c.org/

REFERENCE BOOKS:

- 1. Stephen G. Kochen" Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004
- 2. Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

LIST OF PROGRAMS

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
- 3. Write a Program to find the sum of the series : $x + X^3/3! + X^5/5! + \dots X^n/n!$
- 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
- 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Keyboard
- 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
- 7. Write a program that takes marks of three students as input. Compare the marks to see which student has scored the highest. Check also if two or more students have scored equal marks.
- 8. Write a program to display records of an employee. Like name, address, designation, salary.
- 9. Write a C program, declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer.
- 10. Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2);
- 11. Explore the other functions in string library.
- 12. Write a program to create a file TEST. Write your name and address in the file TEST. Then display it on the console using C program.

SEMESTER - III

Subject Co	ode :	S	ubject Na	me :				Ty/	L	T/	P/R	C
BMA1800	08/BMA		DIS	CRETE	MATH	EMAT	ICS	Lb/		S.Lr		
20008								ET				
								\mathbf{L}				
		P	rerequisit	e : None				Ty	3	1/0	0/0	4
L : Lectur	e T : Tu	torial	S.Lr : Su	pervised	Learnin	g P : Pr	oject R:		C: Cred	lits	I	
T/L/ETL:				•		_	3					
OBJECT												
• To	o unders	stand	the Basic	concepts	in Logic	and Pr	edicate c	alculus				
• To	o unders	stand	the Basic	concepts	in Comb	oinatori	cs					
• To	o unders	stand	the Basic	concepts	in Group	p theory	7					
• To	o unders	stand	the Basic	concepts	in Lattic	ces						
• To	o unders	stand	the Basic	concepts	in Grapl	h theory	7					
COURSE	OUTC	COM	ES (COs)	:								
Students c	ompleti	ng th	e course v	vere able	to							
CO1	Find t	he su	mmation (of the giv	en series	logica	l equatior	is and pred	licate ca	lculus.		
CO2	To de	termi	ne the fun	ctions of	permuta	tion and	d combina	ation.				
CO3	To un	dersta	and the co	ncept of g	group the	eory an	d analysis	operation	of set o	perations	١.	
CO4	Apply	knov	vledge an	d concept	ts in find	ling the	derivativ	e of given	function	n and to f	find the	naxima
			the giver									
CO5								minima of	f a funct	ion of se	veral var	iables.
Mapping	of Cou			with Pro	gram O	utcome	s (POs)					
COs/POs	PO1	PO	2 PO3	PO4	PO5	PO6	DO F	DOO	PO9	DO 10		
CO1	_						PO7	PO8	109	PO10	PO11	PO12
CO2	3	3	-	-	2	2	PO7	-	3	3	PO11	PO12 3
~~	3	3	-	-	2 3	2		- -			PO11 -	
CO3				-			-	-	3		PO11 - -	3
	3	3 3 3	-		3	1	-	-	3	3 -	-	3
CO3 CO4 CO5	3	3	-		3 2	1		-	3 - 2	3 - 3	-	3 3 1
CO3 CO4	3 3	3 3 3	- - -		3 2	1 -		-	3 - 2 2	3 3 3	-	3 3 1 2
CO3 CO4 CO5	3 3	3 3 3 3	- - -		3 2 1	1 -		- - - - - PSO3	3 - 2 2	3 3 3	- - -	3 3 1 2
CO3 CO4 CO5 COs/PSOs	3 3	3 3 3 PSO 2 2	- - -		3 2 1 - PSO2	1 -			3 - 2 2	3 3 3	- - - - PSO4	3 3 1 2
CO3 CO4 CO5 COs/PSOs	3 3	3 3 3 PSO 2 2 2	- - -		3 2 1 - PSO2 1	1 -			3 - 2 2	3 3 3	- - - - - PSO4	3 3 1 2
CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4	3 3	3 3 3 PSO 2 2	- - -		3 2 1 - PSO2 1	1 -			3 - 2 2	3 3 3	- - - - - PSO4 1	3 3 1 2
CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	3 3 3 3	3 3 3 PSO 2 2 2 2 2	1	-	3 2 1 - PSO2 1 1 1 1	2		PSO3 3 3 3 3 3	3 - 2 2	3 3 3	- - - - PSO4 1 1	3 3 1 2
CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4	3 3 3 3	3 3 3 PSO 2 2 2 2 2	1	-	3 2 1 - PSO2 1 1 1 1	2		PSO3 3 3 3 3 3	3 - 2 2	3 3 3	- - - - - PSO4 1 1 1	3 3 1 2
CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 indic	3 3 3 3	3 3 3 PSO 2 2 2 2 2	- - - 1	- - - elation	3 2 1 - PSO2 1 1 1 1 3 - High	1 - 2 2 n, 2 - M	- - - - -	PSO3 3 3 3 1 - Low	3 2 2 2	3 3 3 2	- - - - - PSO4 1 1 1 1	3 3 1 2
CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 indic	3 3 3 3	3 3 3 PSO 2 2 2 2 2		elation	3 2 1 - PSO2 1 1 1 1 3 - High	1 - 2 - M	- - - - -		3 2 2 2	3 3 3 2	- - - - - PSO4 1 1 1 1	3 3 1 2
CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 indic	3 3 3 3	3 3 3 PSO 2 2 2 2 2		elation	3 2 1 - PSO2 1 1 1 1 3 - High	1 - 2 - M	- - - - -		3 2 2 2	3 3 3 2	- - - - - PSO4 1 1 1 1	3 3 1 2
CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4 CO5	3 3 3 3	3 3 3 PSO 2 2 2 2 2	1	- - - elation	3 2 1 - PSO2 1 1 1 1 3 - High	1 - 2 2 n, 2 - M		PSO3 3 3 3 3 3	3 - 2 2	3 3 3	- - - - - PSO4 1 1 1 1	3 3 1 2

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BMA18008/	DISCRETE MATHEMATICS	Ту	3	1/0	0/0	4
BMA20008						

(Common to II yr. / III Sem. B.Tech (Full Time), I yr. / I Sem. B.Tech (Part Time) - CSE,IT)

UNIT I LOGIC 12 Hrs

Statements – Truth Table – Connectives – Normal Forms – Predicate Calculus – Inference Theory.

UNIT II COMBINATORICS

12 Hrs

Mathematical Induction – Pigeon Hole Principle – Principle of Inclusion and Exclusion – Recurrence Relations – Generating Functions.

UNIT III GROUPS 12 Hrs

Basic Concepts – Groups – Subgroups – Homomorphism – Kernel – Cosets – Lagrange's theorem (simple theorems and problems).

UNIT IV LATTICES 12 Hrs

Partial ordering – Posets – Hasse Diagram – Lattices – Properties of lattices – Sub lattices – Special lattices – Boolean Algebra(Definition & simple problems).

UNIT V GRAPHS 12 Hrs

Introduction to Graphs – Terminology – Matrix representation of Graphs: Incidence matrix, Adjacency matrix – Graph Isomorphism – Connectivity – Euler and Hamiltonian Paths (simple theorems and problems).

Total Hours: 60

TEXT BOOKS:

- 1. Veerarajan T., Discrete Mathematics, Tata McGraw Hill Publishing Co., (2008).
- 2. Tremblay J.P., Manohar R., Discrete Mathematical structures with applications to Computer science, Tata McGraw Hill Publishing Co., (2008).

- 1. Kolman, Busby, Ross, Discrete Mathematical Structures, Pearson, (2014).
- 2. Kenneth Rosen, Discrete Mathematics and its applications (SIE), Tata McGraw Hill Publishing Co., (2007).

T/

Ty/

P/R

Subject Code:

Subject Name:

DCC1900	01/BCS20001	Buojee	t Maine		A CTDI	ICTID	TC			L y/		L/ T	P/K	
DC31800	01/BC320001			DAI	CA STR	UCTUR	ES			Lb/	S.	Lr		
										TL				
			uisite: N							Ту	3 1	/0	0/0	4
	re T : Tutorial					Project	R : Res	earch C:	Credits					
	TL: Theory/La	.b/Embe	dded Th	eory and	l Lab									
OBJECT														
	Aaster the impl								-	rees				
	ith Be familia													
	se familiar with		_		_	-			_		d heapso	rt		
	e familiar som	-	_			•		•	_	e				
	laster the stand				y of a ma	ajor prog	grammin	g langua	ge(C++)					
	E OUTCOME													
CO1	Student will													
CO2	Student will	be able	to handl	e operati	ions like	searchin	ng, inser	tion, del	etion, trave	ersing m	nechanisn	n on va	rious d	lata
	structures.													
CO3	Students wil												c.	
CO4	Students wil													
CO5	Student will							plied to	specified p	oroblem	definitio	n		
	of Course O								T	1		1		
COs/POs	8	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	O12
001		3	3	3	2	2	1	1	2	1	2	2		<u> </u>
CO1							1	1						2
CO2		3	3	3	2	1	1	3	2	3	2	1		2
CO2 CO3		3	3 2	3	2 2	1 3	2	1	2 2	3	2	1 2		2
CO2 CO3 CO4		3 3 3	3 2 3	3 3	2 2 3	1 3 2	2 2	1 1	2 2 2	3 3 3	2 1 2	1 2 1		2 2 2
CO2 CO3		3 3 3 3	3 2 3 3	3 3 3	2 2 3 2	1 3 2 1	2 2 2	1 1 1	2 2 2 3	3 3 3 2	2 1 2 1	1 2 1 2		2 2 2 1
CO2 CO3 CO4 CO5		3 3 3	3 2 3 3 3	3 3	2 2 3	1 3 2 1 2	2 2	1 1	2 2 2 3 2	3 3 3	2 1 2	1 2 1 2 2		2 2 2
CO2 CO3 CO4 CO5	Os	3 3 3 3	3 2 3 3 3 PSO1	3 3 3	2 2 3 2	1 3 2 1 2 PSO2	2 2 2	1 1 1	2 2 2 3 2 PSO3	3 3 3 2	2 1 2 1	1 2 1 2	04	2 2 2 1
CO2 CO3 CO4 CO5 COs/PS CO1	Os	3 3 3 3	3 2 3 3 3 PSO1 3	3 3 3	2 2 3 2	1 3 2 1 2 PSO2 3	2 2 2	1 1 1	2 2 2 3 2 PSO3 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2	Os	3 3 3 3	3 2 3 3 3 PSO1 3	3 3 3	2 2 3 2	1 3 2 1 2 PSO2 3 3	2 2 2	1 1 1	2 2 2 3 2 PSO3 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs/PS CO1 CO2 CO3	Os	3 3 3 3	3 2 3 3 3 PSO1 3 3	3 3 3	2 2 3 2	1 3 2 1 2 PSO2 3 3 2	2 2 2	1 1 1	2 2 2 3 2 PSO3 2 1 3	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4	Os	3 3 3 3	3 2 3 3 3 PSO1 3 3 3	3 3 3	2 2 3 2	1 3 2 1 2 PSO2 3 3 2 3	2 2 2	1 1 1	2 2 3 2 PSO3 2 1 3	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5		3 3 3 3 3	3 3 3 3 PSO1 3 3 3 3	3 3 3 3 3	2 2 3 2 2	1 3 2 1 2 PSO2 3 3 2 3 3	2 2 2 1	1 1 1 1	2 2 2 3 2 PSO3 2 1 3	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5	Os icates strengtl	3 3 3 3 3	3 3 3 3 PSO1 3 3 3 3	3 3 3 3 3 3	2 3 2 2 2 gh, 2 - N	1 3 2 1 2 PSO2 3 3 2 3 3	2 2 2 1	1 1 1 1	2 2 3 2 PSO3 2 1 3 1 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5		3 3 3 3 3	3 3 3 3 PSO1 3 3 3 3	3 3 3 3 3 3	2 2 3 2 2 2 gh, 2 – N	1 3 2 1 2 PSO2 3 3 2 3 3	2 2 2 1	1 1 1 1	2 2 3 2 PSO3 2 1 3 1 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5 3/2/1 indi		3 3 3 3 3	3 2 3 3 3 PSO1 3 3 3 3 3	3 3 3 3 3 3	2 2 3 2 2 2 gh, 2 – N	1 3 2 1 2 PSO2 3 3 2 3 3	2 2 2 1	1 1 1 1	2 2 3 2 PSO3 2 1 3 1 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5 3/2/1 indi		3 3 3 3 3	3 2 3 3 3 PSO1 3 3 3 3 relation	3 3 3 3 3 3	2 2 3 2 2 2 gh, 2 – N	1 3 2 1 2 PSO2 3 3 2 3 3 Vedium	2 2 2 1	1 1 1 1	2 2 3 2 PSO3 2 1 3 1 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5 3/2/1 indi		3 3 3 3 3	3 2 3 3 3 PSO1 3 3 3 3 relation	3 3 3 3 3 3	2 2 3 2 2 2 gh, 2 – N	1 3 2 1 2 PSO2 3 3 2 3 3 Vedium	2 2 2 1	1 1 1 1	2 2 3 2 PSO3 2 1 3 1 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5		3 3 3 3 3	3 2 3 3 3 PSO1 3 3 3 3 relation	3 3 3 3 3 3	2 2 3 2 2 2 gh, 2 – N	1 3 2 1 2 PSO2 3 3 2 3 3 Vedium	2 2 2 1	1 1 1 1	2 2 3 2 PSO3 2 1 3 1 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1
CO2 CO3 CO4 CO5 COs / PS CO1 CO2 CO3 CO4 CO5 3/2/1 indi		3 3 3 3 3	3 3 3 3 PSO1 3 3 3 3	3 3 3 3 3	2 3 2 2 2 gh, 2 - N	1 3 2 1 2 PSO2 3 3 2 3 3	2 2 2 1	1 1 1 1	2 2 3 2 PSO3 2 1 3 1 2	3 3 3 2	2 1 2 1	1 2 1 2 2 PSO 1 2		2 2 2 1

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BCS18001/	DATA STRUCTURES	Ty	3	1/0	0/0	4
BCS20001						

UNIT I 12 Hrs

Data Representation: Introduction, Linear Lists, Formula Based Representation, indirect addressing, simulating pointers, comparisons and applications. Arrays, matrices, special and sparse matrices,

UNIT II 12 Hrs

Stack Operations and Applications, Queue Operations and Applications, Single Linked List, Double Linked List, Circular Linked List.

UNIT III 12 Hrs

Trees: Definitions and Properties, Representation of binary trees and its operations, Binary Tree Traversal, Binary Search Tree, AVL trees and its operations, 2-3 tree, 2-3-4 tree.

UNIT IV 12 Hrs

Searching & Sorting: Selection Sort, Merge Sort, Quick Sort, Heap Sort, and Radix Sort - Complexity analysis. Sequential Search, Binary Search, Hashing and its Types.

UNIT V 12 Hrs

Graphs: Definitions and Representation of Graphs, DFS, BFS, Prim's Algorithm, Kruskal's Algorithm

Total Hours: 60 TEXT BOOKS:

- 1. S.Sahani,"Data Structures. Algorithms and Applications in C++", Tata Mc-Graw Hill, 2005
- 2. Yedidyah Langsam, MosheJ Augenstein Aaron M. Tenenbaum, "Data Structures using C and C++", Prentice Hall India,1996, Second Edition.

- 1. Seymour Lipschutz (Schaum's Outline series). McGraw-Hill 2005,3rd Edition
- 2. Sartaz Sahani McGraw HillS.K. Srivatsava, Deepli Srivatsava. BPB Publications.

Subject Code: BCS18003/BCS20003	v		PUTEI	CHIT	ANIZA ECTU		AND		Ty/ Lb/ ETL Ty	L	T/ S.Lr	P/R 0/0	C
L : Lecture T : Tutorial	S.Lr	Super	vised L	earning		oject R	: Rese	arch C:	Credits		I		
Ty/Lb/ETL : Theory/La		edded T	Theory a	and Lat)								
OBJECTIVES				c		. 1 1	CDI		1/0	1 .	1	. 1.1	
• To understand t	-	or comp	onents	of a co	mputer	includ	ing CPU	∪, mem	nory, I/O and	d stora	ge, under	rstand th	e uses
for cache memo	•		- C		1 1	1 41.	•4	.11 .					
To understand a		•		•	_								
To understand to COURSE OUTCOME			•	ig syste	m 1n 1n	terracir	ig with	tne cor	nputer narav	vare			
COURSE OUTCOME		, ,		rotondh		mautar	hordy	ioro he	as evolved	to mad	ot the n	ands of	multi
COI		ssing sy		rstanun	iow co	mputer	naruw	are na	is evolved	to mee	et the n	eeus oi	muni-
CO2	•			tandtha	hacic	etructur	e and o	neratio	n of digital o	comput.	or		
												1	
CO3									nologies both				1.1/0
CO4			unders	tand th	e differ	ent way	s of co	mmuni	cating with	I/O dev	ices and	standard	1 I/O
COF	interfa		ll unda	natan dh			honder	vomo ho	a avalvad	to mae	ot the n	anda of	1ti
CO5				rstanun	iow co	mputer	naruw	are na	as evolved	to mee	et the n	eeus oi	mun-
Mapping of Course Ou		ssing sy		m Out	oomos i	(DOc)							
COs/POs	PO1	PO2	PO3		PO5	PO6	PO7		PO8	PO9	PO10	PO11	PO12
COS/1 OS	3	1	1	1	2	2	1		2	2	2	1	3
CO2	3	3	3	2	1	1	1		1	2	2	2	3
CO3	3	1	1	1	2	2	1		2	2	2	1	3
CO4	3	3	3	2	1	1	1		1	2	2	2	3
CO5	3	2	3	2	1	1	1		1	2	2	2	3
COs / PSOs	3	PSO1	<u> </u>		PSO2		1	1	PSO3			PSO4	
CO1		3			1				2			1	
CO2		3			2				3			2	
CO3		3			3				2			2	
CO4		2			2				3			2	
CO5		2			2				3			2	
3/2/1 indicates strength	of cor		n 3 –	High, 2		lium.	1 – Lov	v			<u> </u>		
				a, -		,							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
				✓									

Subject Code:	Subject Name :	Ty/Lb/ETL	L	T/ SLr	P/R	С
BCS18003/ BCS20003	COMPUTER ORGANIZATION AND ARCHITECTURE	Ту	3	1/0	0/0	4

UNIT I BASIC STRUCTURE OF COMPUTERS

12 Hrs

Basic structure of Computer Hardware-Von-Neumann Architecture-Functional units – Bus Structures - Software performance - Memory locations and addresses - Memory operations - Instruction and instruction sequencing

UNIT II ARITHMETIC AND LOGIC UNIT

12 Hrs

Fixed point arithmetic operation-addition – subtraction – multiplication - division Floating point arithmetic operation-Design of ALU

UNIT III PROCESSOR UNIT

12 Hrs

Data path implementation-Control unit-hardwired control - micro programmed control, nano programming -Concepts of pipelining - Pipeline hazards

UNIT IV MEMORY SYSTEM

12 Hrs

Memory hierarchy-Internal organization of RAM - ROM - Interleaved memory-Cache and associative memories -Virtual memory - Memory organization and cache coherence issues

UNIT V INPUT/OUTPUT AND PERIPHERALS

12 Hrs

Accessing I/O devices – Programmed Input/ Output -Interrupts – Direct Memory Access – IO Processor - Buses – Interface circuits – Standard I/O Interfaces (PCI, SCSI, USB) - I/O devices

Total Hours: 60

TEXT BOOKS:

- 1. John Hayes (2012) ,(2007) digitized Computer Architecture and Organization, Tata McGraw Hill
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, "Computer Organization and Embedded Systems", Sixth Edition, Tata McGraw Hill, 2012.

- 1. Morris Mano (2009) Computer System Architecture, (3rd ed.), Pearson Education
- 2. John L. Hennessey and David A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

Subject Code: BEC18I01/BES20		bject Na		DIGITA	L SYST	TEMS			Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
			e: BES18						Ty	3	0/0	0/0	3
L: Lecture T: Tu						ject R:	Researc	h C: Cr	edits				
Ty/Lb/ETL: Theo	ry/Lab/E	mbedde	d Theory	and Lat)								
OBJECTIVES:													
• To introdu	ice numb	er systei	ns and co	odes and	its conv	rersions							
• To introdu													
• To introdu	ice the de	esign of	various c	ombinati	ional dig	gital circ	uits usin	g logic	gates				
• To bring of	out the an	alysis fo	r synchro	onous an	d asyncl	hronous	Sequent	ial circu	its				
COURSE OUTC													
CO1			knowledg					convers	ions				
CO2			knowledg	_									
CO3			identify,										
CO4	A	bility to	identify	& analyz	ze synch	ronous d	& asyncl	hronous	circuits	3			
Mapping of Cour	se Outco	mes wit	th Progra	am Out	comes (1	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12
CO1	3	1	2	1	1	1	1	1	1		2	1	1
CO2	3	2	1	1	1	1	1	1	1		1	1	1
CO3	2	2	3	1	1	2	1	1	2		2	1	1
CO4	2	2	3	1	1	2	1	1	2		2	1	1
COs / PSOs	PS	01	PSC	02	PS	O3	PS	504					
CO1	1	<u> </u>	3		1	1		1					
CO2	1	L	3		1	1		1					
CO3	3		2		1	1		1					
CO4	3		2]	<u> </u>		1					
3/2/1 indicates str	rength of	correla	tion 3-	- High, 2	2 – Med	ium, 1	- Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	$\mathbf{B}_{\hat{\imath}}$	Sc	Hı So	Pr	Pr	Oľ	Pr		So				

Subject Code:	Subject Name :	Ty/Lb /ETL	L	T/ SLr	P/R	С
BEC18I01/	DIGITAL SYSTEMS	Ty	3	0/0	0/0	3
BEC20I01						

UNIT I NUMBER SYSTEMS

9 Hrs

Review of Decimal, Binary, Octal And Hexadecimal Number Systems –Number Conversions – Signed Magnitude form – 1's and 2's Complement – Binary weighted codes- Binary arithmetic – codes – BCD code, Gray code, Excess-3 Code.

UNIT II BOOLEAN ALGEBRA

9 Hrs

Binary logic Functions- Boolean laws – De Morgan's Theorems, Sum Of Products – Product Of Sums – karnaugh map- Quine McCluskey Method.

UNIT III COMBINATIONAL LOGIC

9 Hrs

Logic gates – AND, OR, NOT, NOR, NAND and EX-OR Gates – Half adder – Full adder – Half subtractor – Multiplexer – Demultiplexer – Decoder – Decoder – Code converters - PAL- PLA.

UNITIV SYNCHRONOUS SEQUENTIAL LOGIC

9 Hrs

Latches-R-S- Flip Flop, S-R Flip Flop, D Flip Flop, JK Flip Flop, T Flip-Flop - Master slave Flip-Flop - Counters – Up Down counters- Binary counters- Ring counters- Shift Registers.

UNIT V ASYNCHRONOUS SEQUENTIAL LOGIC

9 Hrs

Asynchronous counters – Decade counters - State diagram - State Table – State Reduction – State Assignment- Excitation Table-Analysis of Asynchronous sequential circuits - Design of Asynchronous Sequential Circuits.

Total Hours: 45 TEXT BOOKS:

- 1. Charles H. Roth & Larry L.Kinney, "Fundamentals of Logic Design", Cengage Learning, 7th Edition.
- 2. M. Morris Mano & Michael D.Ciletti (2008) Digital Design. Pearson Education
- 3. Thomas.L.Floyd (2013) "Digital Fundamentals", 10th Edition Pearson Education

- 1. Ronald J. Neal S. Gregory L (2009), "Digital Systems", 10th Edition, Pearson Prentice Hall.
- 2. R P Jain, (2010), "Modern Digital Electronics", 4th Edition, Tata Mcgraw Hill Ed. Pvt. Ltd.

Subject Code: BCS18L01/BCS20L01	-		DATA	STRUC	TURES	SLAB			Ty/ Lb/ ETL	L	S.I	Lr	P/R	С
		uisite: N							Lb	0	0/	0	3/0	1
L : Lecture T : Tutorial					Project	R: Rese	earch C:	Credits						
Ty/Lb/ETL: Theory/La	b/Embec	lded The	ory and	Lab										
OBJECTIVES:														
 To strengthen th 	•		_			he chara	cteristics	of an c	bject-ori	ented	l appro	oach.		
 To introduce ob 				C++ and	l Java.									
COURSE OUTCOME														
CO1								progran	nming ar	ıd ide	ntify p	otenti	al ben	efits
			ted progr											
CO2									f varying			es		
CO3									data struc					
CO4	Explain	n what c	onstitute	s an obj	ect-orier	nted app	roach to	progran	nming ar	d ide	ntify p	otenti	al ben	efits
			ted progr											
CO5							g applica	ations o	f varying	com	plexiti	es		
Mapping of Course Ou							_	1			1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8) P	O10	PO1	1 P	O12
CO1	3	3	1	2	1	2	1	1	2		2	2		2
CO2	3	3	1	2	1	2	3	1	2		1	3		2
CO3	3	2	1	2	1	2	1	1	2		2	2		2
CO4	3	3	2	2	1	1	3	1	2		1	2		2
CO5	3	3	1	3	2	2	1	1	2		1	2		2
COs / PSOs		PSO1			PSO2			PSO	3			PSC	04	
CO1		3			3			1				1		
CO2		3			1			2				1		
CO3		2			2			1				3		
CO4		3			2			1				3		
CO5		3			2			1				2	,	
3/2/1 indicates strength	of corr	elation	3 – Hig	h, 2-N	<u> Iedium,</u>	1 – Lo	W			,				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
							√		<u> </u>					

Dr.M.G.R. Educational and Research Institute

	(All 150 Certified Institution)	*	* * /	/		
Subject Code:	Subject Name with Graded Autonomy Statu Maduravoyal, Chennai - 600 09	Ty/Lb/E	L	T/	P/R	C
	COMPUTER SCIENCE AND EN	' I' I		SLr		
BCS18L01	DATA STRUCTURES LAB	Lb	0	0/0	3/0	1
/DCC201 01		I				

LIST OF EXPERIMENTS

- 1. Operation on arrays insertion and deletion
- 2. Linked lists-creation, insertion, deletion of single, double and circular lists.
- 3. Stack- operations using arrays and linked lists.
- 4. Infix to postfix conversion
- 5. Evaluation to postfix expression.
- 6. Queue- operations using arrays and linked lists.
- 7. Dequeue, circular-operations
- 8. Binary tree traversals- In order, pre order, post order using recursion
- 9. Binary tree traversals- In order, pre order, post order using non recursion
- 10. Linear and binary search
- 11. Sorting Selection Sort, Quick sort, Heap Sort and Merge Sort.
- 12. Addition, multiplication of sparse matrices
- 13. Polynomial addition and multiplication
- 14. Depth first search of a graph
- 15. Breadth first search of a graph.

Subject Code: BCS18L02/BCS20L02	OBJ		RIENTI	LA		MING V	WITH C	·++	Ty/ Lb/ ETL	L	S.	Lr	P/R	C
I. I. activing T. Tretonici	_	uisite: B			usisst D	. Danas	ach C. C		Lb	0	0/	0 .	3/0	1
L: Lecture T: Tutorial Ty/Lb/ETL: Theory/Lab.	S.Lr : Su				roject K	: Kesea	ren C: C	reaus						
OBJECTIVES:	Ellibeac	ieu Theo	i y and L	iau										
• 1.To dev	alan akili	la to dos	ian and a	nolyzo e	impla li	naar and	non line	or doto	atmiatin	•00				
	•		_	•	•						. maal v	rvould ma	.ahla	
• 2.To Stre								ructure	for the	givei	i reai v	voria pi	obie	111
• 3. To Ga			practical	applicat	ions of c	iata struc	ctures							
COURSE OUTCOMES					4:		- cc: .:	f 4	ا مامده	~4	4			
CO1							e efficier	_		struc	ture			
CO2	•			• • •	*		ure for g		robiem					
CO3							data stru							
CO4						inheritan	ce, hidi	ng,poly	morphi	smet	c in pro	ogramn	ning	
CO5		p applic												
Mapping of Course Out		`	1											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS			PO10	PO11	P	012
CO1	3	3	3	3	3	3	3	3	2		3	3		3
CO2	3	3	1	2	2	2	2	3	2		2	3		3
CO3	3	3	2	2	2	3	2	3	2		1	3		3
CO4	3	2	2	3	2	3	3	3	3		3	3		3
CO5	3	3	3	3	3	3	3	3	3		3	3		3
COs / PSOs		PSO1	•		PSO2			PSC	03	•		PSO	4	
CO1		3			3			3				1		
CO2		3			3			2				3		
CO3		3			2			3				2		
CO4		3			3			3				3		
CO5		3			3			3				3		
3/2/1 indicates strength	of corre	lation 3	3 – High	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	dium, 1	1 – Low				u				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					

Subject Code:	Subject Name :	Ty/L b/ET L	L	T/ SLr	P/R	С
BCS18L02/ BCS20L02	OBJECT ORIENTED PROGRAMMING WITH C++ LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Simple C++ Programs to Implement Various Control Structures.
 - a. If statement
 - b. Switch case statement and do while loop
 - c. For loop
 - d. While loop
- 2. Programs to Understand Structure & Unions.
 - a. Structure
 - b. Union
- 3. Programs to Understand Pointer Arithmetic.
- 4. Functions & Recursion.
 - a. Function
 - b. Recursion
- 5. Inline Functions.
- 6. Programs to Understand Different Function Call Mechanism.
 - a. Call by reference & Call by Value
- 8. Programs to Understand Storage Specifiers.
- 8. Constructors & Destructors.
- 9. Use of "this" Pointer, using class
- 10. Programs to Implement Inheritance and Function Overriding.
 - a. Multiple inheritances -Access Specifiers
 - b. Hierarchical inheritance Function Overriding /Virtual Function
- 11. Programs to Overload Unary & Binary Operators as Member Function & Non Member Function.
 - a. Unary operator as member function
 - b. Binary operator as non member function
- 12. Programs to Understand Friend Function & Friend Class.
 - a. Friend Function
 - b. Friend class
- 13. Programs on Class Template

Subject Code:		bject Na	me:					,	Ty/	L	T /	P/R	С
BEC18IL1/BEC201	L1		DIGITA	L SYST	EMS L	AΒ			Lb/		S.Lr		
								E	ETL				
	Pre	erequisite	e: BES18	3001					Lb	0	0/0	3/0	1
L : Lecture T : Tuto					P : Proj	ect R:	Researcl	n C: Cred	lits		1	1	
Ty/Lb/ETL: Theor	y/Lab/Eı	nbedded	l Theory a	and Lab	v								
OBJECTIVES:													
• To introduc	e numbe	r system	ns and coo	des and i	ts conve	ersions							
• To introduc	e Boolea	an algebi	ra and its	applicat	ions in o	digital sy	stems						
• To introduc	e the des	sign of v	arious co	mbinatio	onal digi	ital circu	its using	g logic ga	ates				
 To bring out 	it the ana	lysis for	synchron	nous and	l asynch	ronous S	Sequenti	al circuit	ts				
			•		-		-						
COURSE OUTCO	MES (C	COs):(3- 5)										
CO1	A	cquired	knowledg	ge about	number	systems	and its	conversi	ons				
CO2			knowledg										
CO3			identify,										
CO4	A	bility to	identify &	& analyz	e synch	ronous d	& asyncl	hronous	circuit	ts			
Mapping of Cours	e Outco	mes witl	h Progra	m Outc	omes (P	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO1	1 PO12
CO1	3						PO7	PO8	PO	9	PO10 2	PO1	1 PO12
CO1 CO2	3	PO2 1 2	PO3 2 1	PO4	PO5	PO6 1			1		2		1 PO12 1 1
CO1 CO2 CO3	3 3 2	PO2 1 2 2	PO3 2 1 3	PO4	PO5	PO6 1 1 2	1	1	1		2 1 2	1	1
CO1 CO2 CO3 CO4	3	PO2 1 2	PO3 2 1	PO4 1 1	PO5 1 1	PO6 1	1 1	1 1	1		2	1 1	1 1
CO1 CO2 CO3 CO4 COs/PSOs	3 3 2	PO2 1 2 2 2	PO3 2 1 3	PO4 1 1 1 1 1	PO5 1 1 1 1 1	PO6 1 1 2	1 1 1 1	1 1 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1	3 3 2 2	PO2 1 2 2 2	PO3 2 1 3 9 PS0 3	PO4 1 1 1 1 1 02	PO5 1 1 1 1 1	PO6 1 1 2 2	1 1 1 1	1 1 1 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs/PSOs CO1	3 2 2 PSO 1	PO2 1 2 2 2 01	PO3 2 1 3 3 PS0 3 3	PO4 1 1 1 1 1 2 2 2	PO5 1 1 1 1 1	PO6 1 1 2 2	1 1 1 1 PS	1 1 1 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2	3 3 2 2 PS0 1 1 3	PO2 1 2 2 2 01	PO3 2 1 3 3 PS0 3 3 2	PO4 1 1 1 1 1 02	PO5 1 1 1 1 1	PO6 1 1 2 2	1 1 1 1 PS	1 1 1 1 5 04	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2 CO3	3 3 2 2 PSo 1 1 3 3	PO2 1 2 2 2 01	PO3 2 1 3 PSC 3 2 2 2 2	PO4 1 1 1 1 1 2 2 2	PO5 1 1 1 1 PS	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 04 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2	3 3 2 2 PSo 1 1 3 3	PO2 1 2 2 2 01	PO3 2 1 3 PSC 3 2 2 2 2	PO4 1 1 1 1 1 2 2 2	PO5 1 1 1 1 PS	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 O4 1 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2 CO3	3 3 2 2 PSo 1 1 3 3	PO2 1 2 2 2 01	PO3 2 1 3 PSC 3 2 2 2 2	PO4 1 1 1 1 1 2 2 2	PO5 1 1 1 1 PS - Medi	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 O4 1 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2 CO3	3 3 2 2 PSO 1 1 3 3 ength of	PO2 1 2 2 2 01	PO3 2 1 3 3 PS0 3 2 ion 3 –	PO4 1 1 1 1 1 2 2 2	PO5 1 1 1 1 PS - Medi	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 O4 1 1 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2 CO3 CO4 3/2/1 indicates stree	3 3 2 2 PSO 1 1 3 3 ength of	PO2 1 2 2 2 01 correlat	PO3 2 1 3 3 PS0 3 2 ion 3 –	PO4 1 1 1 1 02 High, 2	PO5 1 1 1 1 PS - Medi	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 O4 1 1 1	1 1 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2 CO3 CO4 3/2/1 indicates stree	3 3 2 2 PSO 1 1 3 3 ength of	PO2 1 2 2 2 01 correlat	PO3 2 1 3 3 PS0 3 2 ion 3 –	PO4 1 1 1 1 02 High, 2	PO5 1 1 1 1 PS - Medi	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 O4 1 1 1	1 1 2 2 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2 CO3 CO4 3/2/1 indicates stree	3 3 2 2 PSO 1 1 3 3 ength of	PO2 1 2 2 2 01 correlat	PO3 2 1 3 3 PS0 3 2 ion 3 –	PO4 1 1 1 1 02 High, 2	PO5 1 1 1 1 PS - Medi	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 O4 1 1 1	1 1 2 2 2		2 1 2	1 1 1	1 1 1
CO1 CO2 CO3 CO4 COs / PSOs CO1 CO2 CO3	3 3 2 2 PSo 1 1 3 3	PO2 1 2 2 2 01	PO3 2 1 3 PSC 3 2 2 2 2	PO4 1 1 1 1 1 2 2 2	PO5 1 1 1 1 PS	PO6 1 2 2 O3 1 1 1 1 1 1 1 1 1	1 1 1 1 PS	1 1 1 1 5 O4 1 1	1 1 2 2 2		2 1 2	1 1 1	1 1 1

Subject Code:	Subject Name :	Ty/Lb/ ETL	L	T/ SLr	P/R	С
BEC18IL1/ BEC20IL1	DIGITAL SYSTEMS LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Verification of Truth tables of Logic Gates
- 2. Implementation of Boolean function
- 3. Implementation of Half and full Adders
- 4. Implementation of Half and full Subtractors
- 5. Implementation of Multiplexers
- 6. Implementation of Demultiplexers
- 7. Implementation of Encoder
- 8. Implementation of Decoders
- 9. Verification of Flip Flops
- 10. Implementation of Shift Registers
- 11. Implementation of Counters
- 12. Study of A to D Converters

Subject Code: BCS20A01		t Name :	AN	ICIAL IN			PRINCII	PLES	Ty/ Lb/ ETL	I		T/ .Lr	P/R	C
	Prerequi	isite: NII	_						ETL	1)/1	3/0	3
L : Lecture T :			•	_	P : Proje	ct R:Re	search C:	Credits						
T/L/ETL : The	ory/Lab/E	Embedded	Theory a	nd Lab										
OBJECTIVE:														
The objective of														_
		ar with	•	inciples	of Al to	oward pr	oblem so	olving,	inferen	ce,	percep	tion,	knowl	edge
		and learnin	_		1.1	1 .	11 '	,	. 1 6	A	1 .	. 11'		
		sic knowl			_	_		-				_		1
		licability,	_				sic know	leage re	epresent	ation	, prob	iem s	oiving,	ana
COURSE OU		s in solvii		iai engine	ering pro	oienis								
COURSE OU		rate funda		erstanding	of the eva	luation of	Artificial I	ntelligen	ce (AI) :	nd it	s found	ations		
CO2		sic princip		_				_						
	andlearn					r-3010111			,		-r		7	
CO3	Design s	imple softv	vare to exp	eriment w	ith various	AI concep	ts and ana	lyseresul	lts					
CO4		the import												
CO5		rate worki						olete and	or uncer	tain	informa	ation a	lso to sh	low
7.5		searching a					ving							
Mapping of C							DO5	DO:) D/	<u> </u>	DO 10	- DO	11 D	010
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS			PO10	PO		012
CO1	3	2	2	2	3	3	3	2	3	3	3	3		3
CO2 CO3	2	2 2	3	2 2	3	3	2 2	2 2			3	2		2
CO4	3	2	3	1	3	2	2	2			2	$\frac{2}{1}$		1
CO5	2	2	2	1	1	2	2	2			2	1		1
COs / PSOs	2	PSO1		1	PSO2			PSO		_		_	SO4	1
CO1		3			3			1					2	
CO2		2			1			2					2	
CO3		2			2			1					2	
CO4		1			2			2					1	
CO5		2			2			1					1	
3/2/1 indicates	strength	of corre	lation 3	– High, 2	– Mediu	m, 1 – L	ow							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
1	1	1		1	✓	1						1		

Subject Code:	Subject Name :	Ty/Lb/ ETL	L	T/ SLr	P/R	С
BCS20AET1	ARTIFICIAL INTELLIGENCE:	ETL	1	0/1	3/0	3
	PRINCIPLES AND TECHNIQUES					

Unit:1 INTRODUCTION 9 Hrs

Philosophy of artificial intelligence, Definitions - Evolution of AI - Applications of AI, Classification of AI- Intelligent Agents: Agents and Environment-Nature of Environment- Structure Environment

Unit:2- SEARCHING BASED PROBLEM SOLVING

9 Hrs

Problem Solving Agent - Blind Search- Performance measures - Informed Search: Introduction to Heuristics-Variants of heuristic search-uniform cost, A*,Greedy - Overview of Hill Climbing - Simulated Annealing - Genetic Algorithms - Adversarial Search - Minimax, Alpha beta pruning

Unit:3- KNOWLEDGE REPRESENTATION ANDREASONING

9 Hrs

Logical systems – Knowledge Based systems, Propositional Logic – Constraints, Predicate Logic – First Order Logic, Inference in First Order Logic, Ontological Representations and applications Knowledge representation and reasoning through logic

Unit:4- UNCERTAINTY AND KNOWLEDGE REASONING

9 Hrs

Overview – Definition of uncertainty, Utility Based System, -Bayes Rule – Inference, Belief Network, Markov decision processes, knowledge representation and reasoning through fuzzy logic and Bayesian networks

Unit:5- VI LEARNING SYSTEMS

9 Hrs

Machine learning, Forms of Learning – Types - Supervised, unsupervised, reinforcement learning, Learning Decision Trees, soft computing- Artificial Neural Network.

Total hours: 45 hours

TEXT BOOKS

- 1. Stuart Russell and Peter Norvig Artificial Intelligence A Modern Approach, Prentice Hall, 3rd edition, 2011.
- 2. Elaine Rich, Kevin Knight and Shiv Shankar B. Nair, Artificial Intelligence, 3rd edition, Tata McGraw Hill, 2009.

- 1. Wolfgang Ertel," Introduction to Artificial Intelligence", Second Edition, Springer, 2017.
- 2. Stephen Lucci and Danny Kopec," Artificial Intelligence in the 21st Century, Second Edition, Mercury Learning and Information, 2015.
- 3. Deepak Khemani, "A First Course in Artificial Intelligence", McGraw Hill Education, 2013.
- 4. Miroslav Kubat," An Introduction to Machine Learning", Springer, 2016.
- 5. DavidL.PooleandAlanK.Mackworth, "ArtificialIntelligence: Foundations of Computational Agents

SEMESTER - IV

Subject Code BMA18016/B			TATIS	FICS FO ENGIN		PUTER		Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
		Prerequi	isite : No	one				Ty	3	1/0	0/0	4
L : Lecture T						ct R:Re	esearch	C: Cred	its			
T/L/ETL: Th	•	Embedde	d Theor	y and Lal	b							
OBJECTIVE												
	derstand the		_									
	derstand the		_		-							
	nderstand the		_									
	derstand the		•		•							
	derstand the		ncepts i	n Samplii	ng theory	7						
COURSE OU												
Students comp												
CO1	Find the su											
CO2	To determ	ine the fu	nctions of	of permut	ation and	d combin	ation.					
CO3	To unders	tand the c	oncept o	f corelati	on opera	tions.						
CO4	Apply kno minima of	the given	functio	n using la	ittices.							
CO5	Evaluate t	he partial	/ total di	ifferentiat	tion and	maxima ,	/ minim	a of a fu	nction o	f several	variables.	
Mapping of 0												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	2	-	_	3	3	_	
CO2	3	3		_	3			_	_			3
CO3	_		-	_	5	1	-	_		-	-	3
	3	3	-	-	2	1 -	-	-	2	3	-	
CO4	3	3		-				-		3 3		3
			-		2	-	-	-	2			3
CO4	3 3	3	-		2	-	-	-	2 2	3	-	3 1 2
CO4 CO5 COs/PSOs CO1	3 3	3 3 PSO1 2	-		2	-	-	- - - - PSO3	2 2	3	-	3 1 2
CO4 CO5 COs / PSOs	3 3	3 3 PSO1 2	-		2	-	-	- - - - PSO3 3	2 2	3	-	3 1 2
CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3	3 3 PSO1 2 2 2	-		2 1 PSO2	-	-	- - - - - PSO3 3 3 3	2 2	3	- - PSO4	3 1 2
CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3	3 PSO1 2 2 2 2	-		2 1 PSO2	-	-	- - - - PSO3 3 3 3 3	2 2	3	- PSO4 1 1 1	3 1 2
CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3	3 3 PSO1 2 2 2 2 2		-	PSO2 1 1 1 1 1 1	- 2		- - - - - PSO3 3 3 3	2 2	3	- PSO4 1 1	3 1 2
CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3	3 3 PSO1 2 2 2 2 2	- - - ation 3	- - - High, 2	PSO2 1 1 1 1 1 1	- 2		- - - - PSO3 3 3 3 3	2 2	3	- PSO4 1 1 1	3 1 2
CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3	3 3 PSO1 2 2 2 2 2	ation 3	-	PSO2 1 1 1 1 1 1	- 2	- - - - Low	- - - - PSO3 3 3 3 3	2 2	3	- PSO4 1 1 1 1	3 1 2

SUBJECT CODE	SUBJECT NAME	Ty/L b/ET L	L	T/SLr	P/R	С
BMA18016	STATISTICS FOR COMPUTER ENGINEERS	Ty	3	1/0	0/0	4
/BMA20016						

(Common to III yr. / V Sem. B.Tech (Full Time), I yr. / II Sem. B.Tech (Part Time) - CSE,IT)

UNIT I BASICS OF STATISTICS

12 Hrs

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Quartile Deviation – Standard Deviation – Relative Measures of Dispersion – Coefficient of Variation – Quartile Coefficient of Variation.

UNIT II PROBABILITY AND RANDOM VARIABLE

12 Hrs

Axioms of Probability – Conditional probability – Total probability – Baye's Theorem – Random variable – Probability mass function – Probability density function – Properties – Moments (Definition and simple problems).

UNIT III CORRELATION & REGRESSION

12 Hrs

Measures of Skewness & Kurtosis – Bi-variate data – Applications of Correlation: Karl Pearson's Coefficient of Correlation – Rank Correlation: Spearman's Rank Correlation – Linear Regression.

UNIT IV STANDARD DISTRIBUTIONS

12 Hrs

Binomial – Poisson – Geometric – Uniform – Exponential – Normal distributions.

UNIT V TESTING OF HYPOTHESIS

12 Hrs

Tests of Significance – Large Sample Tests – Mean – Proportions – Small Sample Tests – t, F, Chi-square Tests: Independence of Attributes, Goodness of Fit.

Total Hours: 60

TEXT BOOKS:

- 1. Veerarajan T., Probability, Statistics and, Random Processes, Tata McGraw Hill Publishing Co., (2008).
- 2. Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand & Co., (2007).

- 1. Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017).
- 2. Richard Johnson A., Miller & Freund's Probability and statistics for Engineers (9thed), Prentice Hall of India, (2016).

S.Lr : Subedded erent issand logi	uisite: B pervise Theory ues invo	d Learni and Lat	ing P:1	Project	D · Dage			Ty	1	3 0/1		α / α	
bedded erent iss and logi anding (Theory ues invo	and Lat		Project	$\mathbf{p} \cdot \mathbf{p}_{\Delta c}$					J 0/.	L	0/0	4
erent iss and logi	ues invo	olved in)		IX . IXCS	earch C:	Credit	S					
and logi anding o	cal data												
and logi anding o	cal data					•	c 1						
anding o				_	•				•		,		
	nt accant				•	-	-						
(COs) :		ial DBN	VIS conc	epts suc	ch as: da	itabase s	ecurity	, integ	grity, a	and cond	currenc	7.	
* * *		1 .1	. 6 1		DD1 (G		1.						
									_				
						aıntaıniı	ng, and	query	ing da	atabases	•		
							databas	se syst	ems				
• Ev	aluate a	director	ry on ba	se of ad	equate s	scheme							
omes w		gram O	utcome	s (POs)									
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	PO10	PO1	. P (012
3	2	2	2	2	2	1	2		2	2	2		2
	2	3	2	2		2	2			2	1		3
	_			_			1						3
					2	2	2			3			3
2	3	3	2		2	2	1		3	2	2		3
	PSO1			PSO2			PS	03			PSC	4	
	3			2			3				3		
	3			3							3		
	2			3			3				3		
	2			3			3				3		
	2			3			3				3		
f correl	ation 3	3 – Higl	h, 2 – M	ledium,	1 – Lo	w				•			
Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
0	COs): Un Lee Ree Ev PO1 3 3 2 3 2	October 1: (3-5) Understance Learn tech Design Dae Represent Evaluate a Comes with Property 2 3 2 2 3 2 2 3 3 2 2 3 PSO1 Scorrelation Section Sectio	Os): (3-5) ■ Understand the mo ■ Learn techniques of the property of the pro	• Understand the most fundation of the control of t	● Understand the most fundamental ■ Learn techniques required for buil ■ Design Databases for applications ■ Represent diverse indexing approa ■ Evaluate a directory on base of ad Possible Possible Possible Possible Possible Possible	• Understand the most fundamental DBMS • Learn techniques required for building, m • Design Databases for applications • Represent diverse indexing approach in di • Evaluate a directory on base of adequate somes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 3 2 2 2 2 2 2 2 3 2 3 2 3 2 2 3 2 3 3 3 3	Understand the most fundamental DBMS concept • Learn techniques required for building, maintainin • Design Databases for applications • Represent diverse indexing approach in different of Evaluate a directory on base of adequate scheme towns with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 2 2 2 2 2 2 1 3 2 3 2 2 2 2 2 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	COs): (3-5) ● Understand the most fundamental DBMS concepts and telearn techniques required for building, maintaining, and ● Learn techniques required for building, maintaining, and ● Design Databases for applications ● Represent diverse indexing approach in different database ● Evaluate a directory on base of adequate scheme POI PO2 PO3 PO4 PO5 PO6 PO7 PO 3 2 2 2 2 2 2 2 1 2 2 3 3 2 3 2 2 2 2 2 2 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Understand the most fundamental DBMS concepts and technic Learn techniques required for building, maintaining, and query Design Databases for applications Represent diverse indexing approach in different database syst Evaluate a directory on base of adequate scheme Design Databases for applications Represent diverse indexing approach in different database syst Evaluate a directory on base of adequate scheme DPO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 2 2 2 2 2 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	COs): (3-5) • Understand the most fundamental DBMS concepts and techniques • Learn techniques required for building, maintaining, and querying defections • Design Databases for applications • Represent diverse indexing approach in different database systems • Evaluate a directory on base of adequate scheme PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	COss: (3-5) • Understand the most fundamental DBMS concepts and techniques • Learn techniques required for building, maintaining, and querying databases • Design Databases for applications • Represent diverse indexing approach in different database systems • Evaluate a directory on base of adequate scheme ones with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	COss: (3-5) • Understand the most fundamental DBMS concepts and techniques • Learn techniques required for building, maintaining, and querying databases. • Design Databases for applications • Represent diverse indexing approach in different database systems • Evaluate a directory on base of adequate scheme PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Understand the most fundamental DBMS concepts and techniques Learn techniques required for building, maintaining, and querying databases. Design Databases for applications Represent diverse indexing approach in different database systems Evaluate a directory on base of adequate scheme to the sum of the program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO13 PO13 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO13 PO13 PO13 PO13 PO14 PO13 PO14 PO15 PO15 PO15 PO16 PO17 PO18 PO19 PO19 PO19 PO19 PO19 PO19 PO19 PO19

SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
BCS18004/	DATABASE MANAGEMENT SYSTEMS	Ty	3	0/1	0/0	4
BCS20004						

UNIT I FUNDAMENTALS OF DATABASE

12 Hrs

Introduction - Purpose of database systems - Data Abstraction -Data models - Instances and schemas - Data Independence - DDL - DML - Database user - ER model - Entity sets- keys - ER diagram - relational model - structure - relational algebra- relational calculus- views

UNIT II SQL 12Hrs

SQL - QBE - level - Basic Structure - various operations - relational database design - problems in the relational database design - normalization - normalization using functional - Multivalued join dependence

UNIT III FILE STRUCTURE, INDEXING & HASHING

12 Hrs

File and system structure – overall system structure – file transaction – data dictionary – indexing and hashing basic concepts and B+ tree Indices - static and dynamic hash functions

UNIT IV QUERY PROCESSING AND TRANSACTIONS

12 Hrs

 $Overview - Measures \ of \ Query \ Cost - Selection \ Operation - Sorting - Join \ Operation - Transaction \ Concept - A \ Simple \ Transaction \ Model - Storage \ Structure - Serializability$

UNIT V CONCURRENCY CONTROL AND RECOVERY SYSTEM

12 Hrs

Lock-Based Protocols - Deadlock Handling - Timestamp-Based Protocols - Validation-Based Protocols - Failures Classification - Storage - Recovery and Atomicity - Recovery Algorithm - Buffer Management

Total Hours: 60

TEXT BOOKS:

1. Abraham, Silberschatz. Henry, F. K.. Sudharshan, S. (2013) Database System Concepts (6thed.) Tata McGraw Hill, New Delhi

- 1. Ramez, E. Shamkant, B. Navathe (2008) Fundamentals of database systems (5th ed.), Pearson Education
- 2. Date, C. J. (2012) An Introduction to Database Systems (8th ed.), Pearson Education

Ty/

Subject Code:

Subject Name:

8005/BCS				ANALYS	SIS OF A	ALGOR	ITHMS		Lb/	'			P/R	C
									Ty		3 (0/0	0/0	3
					Project	R: Res	earch C:	Credit	S	_				_
	ry/Lab/En	nbedded T	Theory and I	_ab										
	_		-	_										
			•	esign tecl	hniques.									
		•												
				thm pow	er									
RSE OUT		, , ,	,											
		-												
	Analyze	the time a	and space co	mplexity	of algor	rithms.								
		,					design	techn	iques	for	a	given	prob	olem.
							e limitati	ons in	solving	g the	problen	n		
				-										
						_		,				_		
POs		PO	PO3	PO4	PO5	PO6	PO7	PO	8 P	O 9	PO10	PO1	1 P	O12
				2	1	1	1	2		1	1	2		1
				1		1		_						2
														2
	2	3	3	3	2	1	2	1		1	1	2		1
	2	3	3	3	2	1	1	1		2	2	2		1
PSOs		PSO1			PSO2	1		PSC	03			PSC)4	
		3			3			2	,			2		
		3			3			3				1		
		3			2			2	,			2		
		3			3			3				3		
		3			3			3				3		
indicates s	strength o	f correla	tion $3-H$	$igh, \overline{2-N}$	Aedium,	1 – Lo	w							
Category	Basic Sciences	ering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	cture T : TTL : Theo CTIVE : To Lear To under To Under RSE OUT POS POS indicates :	cture T : Tutorial STL : Theory/Lab/En TL : Theory/Lab/En To Learn the algor To understand the To Understand the To Understand the RSE OUTCOMES Design a Analyze Critically Modify e Analysin Create an oing of Course Outce POS PO1 3 3 3 2 PSOs	Prerequising cture T: Tutorial S.Lr: Support TL: Theory/Lab/Embedded Tourist To Learn the algorithm and To understand the different To Understand Iterative algorithms and Tourist Tou	Prerequisite: Nil cture T: Tutorial S.Lr: Supervised Lear TL: Theory/Lab/Embedded Theory and I TIVE: To Learn the algorithm analysis technic To understand the different algorithms To Understand Iterative algorithms To Understand the limitations of Algorithms To Understand the limitations of Algorithms To Understand the limitations of various Analyze the time and space con Critically analyze the Modify existing algorithms to Analysing the structure of tree Create an algorithm for solvin Sing of Course Outcomes with Program POS PO1 PO2 PO3 3 3 2 2 3 3 3 3 PSOs PSO1 3 3 4 3 4 3 4 3 4 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6	Prerequisite: Nil cture T: Tutorial S.Lr: Supervised Learning P: TL: Theory/Lab/Embedded Theory and Lab TIVE: To Learn the algorithm analysis techniques. To understand the different algorithm design techniques algorithms To Understand Iterative algorithms To Understand the limitations of Algorithm powers (COs): (3-5) Design algorithms for various computing analyze the different Modify existing algorithms to improve Analysing the structure of tree and granger Create an algorithm for solving real working of Course Outcomes with Program Outcomes (Cos) POS PO1 PO2 PO3 PO4 3 3 3 2 2 2 2 3 3 3 3 PSOS PSO1 PSOS PSO1 Analysing the structure of tree and granger of Course Outcomes with Program Outcomes (Cos) BROS PSO1 DESIGN AND ANALYSIS OF A Prerequisite: Nil cture T: Tutorial S.Lr: Supervised Learning P: Project TL: Theory/Lab/Embedded Theory and Lab TIVE: To Learn the algorithm analysis techniques. To understand the different algorithm design techniques. To Understand Iterative algorithms To Understand the limitations of Algorithm power RSE OUTCOMES (COs): (3-5) Design algorithms for various computing proble Analyze the time and space complexity of algorithms to improve efficient Analysing the structure of tree and graphs to ide Create an algorithm for solving real world applications of Course Outcomes with Program Outcomes (POs) POS POI PO2 PO3 PO4 PO5 3 3 3 2 2 1 3 3 3 3 2 2 2 1 3 3 3 3 2 2 2 1 3 3 3 3 2 2 2 1 3 3 3 3 3 2 PSOS PSOI PSO1 PSO2 PSOS PSO1 PSO2 Analysing the structure of tree and graphs to ide Course Outcomes with Program Outcomes (POs) PSOS PSO1 PSO2 ANALYSIS OF ANALYSI	DESIGN AND ANALYSIS OF ALGOR Prerequisite: Nil cture T: Tutorial S.Lr: Supervised Learning P: Project R: Res TL: Theory/Lab/Embedded Theory and Lab TIVE: To Learn the algorithm analysis techniques. To understand the different algorithm design techniques. To Understand Iterative algorithms To Understand the limitations of Algorithm power RSE OUTCOMES (COs): (3-5) Design algorithms for various computing problems Analyze the time and space complexity of algorithms. Critically analyze the different algorithm Modify existing algorithms to improve efficiency. Analysing the structure of tree and graphs to identify the Create an algorithm for solving real world applications sing of Course Outcomes with Program Outcomes (POs) POS POI PO2 PO3 PO4 PO5 PO6 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 3 3 2 2 2 1 1 PSOS PSOI PSO2 3 3 3 3 2 1 PSOS PSOI PSO2 3 3 3 3 3 1 2 1 PSOS PSOI PSO2 3 3 3 3 3 1 2 1 PSOS PSOI PSO2 3 3 3 3 3 3 1 2 1 PSOS PSOI PSO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Prerequisite: Nil Citure T : Tutorial S.Lr : Supervised Learning P : Project R : Research C: TTVE : To Learn the algorithm analysis techniques. To Understand Iterative algorithms To Understand Iterative algorithms To Understand the limitations of Algorithm power RSE OUTCOMES (COs) : (3-5) Design algorithms for various computing problems Analyze the time and space complexity of algorithms. Critically analyze the different algorithm design Modify existing algorithms to improve efficiency. Analysing the structure of tree and graphs to identify the limitati Create an algorithm for solving real world applications Interpretation of the complex of the comple	DESIGN AND ANALYSIS OF ALGORITHMS Prerequisite: Nil	DESIGN AND ANALYSIS OF ALGORITHMS Prerequisite: Nil Ty cture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits TL: Theory/Lab/Embedded Theory and Lab TIVE: To Learn the algorithm analysis techniques. To understand the different algorithm design techniques. To Understand the limitations of Algorithm power RSE OUTCOMES (COs): (3-5) Design algorithms for various computing problems Analyze the time and space complexity of algorithms. Critically analyze the different algorithm design techniques Modify existing algorithms to improve efficiency. Analysing the structure of tree and graphs to identify the limitations in solving Create an algorithm for solving real world applications Total and the program Outcomes (POs) POS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 POS	DESIGN AND ANALYSIS OF ALGORITHMS The course of the cou	DESIGN AND ANALYSIS OF ALGORITHMS Prerequisite: Nil	DESIGN AND ANALYSIS OF ALGORITHMS	Prerequisite: Nil	

SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
BCS18005/	DESIGN AND ANALYSIS OF ALGORITHMS	Ту	3	0/0	0/0	3
BCS20005						

UNIT I INTRODUCTION

9 Hrs

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types – Fundamentals of the Analysis of Algorithm Efficiency – Analysis Framework – Asymptotic Notations and its properties – Mathematical analysis for Recursive and Non-recursive algorithms.

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER

9 Hrs

Brute Force – Closest-Pair and Convex Hull Problems-Exhaustive Search – Traveling Salesman Problem – Knapsack Problem – Assignment problem. Divide and conquer methodology – Merge sort – Quick sort – Binary search – Multiplication of Large Integers – Strassen's Matrix Multiplication-Closest-Pair and Convex Hull Problems.

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

9 Hrs

Computing a Binomial Coefficient – Warshall's and Floyd' algorithm – Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique– Prim's algorithm- Kruskal's Algorithm- Dijkstra's Algorithm-Huffman Trees.

UNIT IV ITERATIVE IMPROVEMENT

9 Hrs

The Simplex Method-The Maximum-Flow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER

9 Hrs

Limitations of Algorithm Power-Lower-Bound Arguments-Decision Trees-P, NP and NP-Complete Problems-Coping with the Limitations – Backtracking – n-Queens problem – Hamiltonian Circuit Problem – Subset Sum Problem-Branch and Bound – Assignment problem – Knapsack Problem – Traveling Salesman Problem- Approximation Algorithms for NP – Hard Problems – Traveling Salesman problem – Knapsack problem.

Total Hours: 45

TEXT BOOK:

1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2012.

- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, PHI Learning Private Limited, 2012.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.
- 3. Donald E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearson Education, 2009. Steven S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2008.
- 4. http://nptel.ac.in/

Subject Code: BEC18I02/BEC20I02		ct Name OPROC		S AND N	MICROC	CONTRO	OLLERS	S I	Гу/ Lb/ LTL		T/ .Lr	P/R	C
	Prereq	uisite: B	EC18I0	1					TY	3)/0	0/0	3
L : Lecture T : Tutorial					P: Projec	ct R:R	esearch	C: Credits	8				
T/L/ETL: Theory/Lab/	Embedo	ded The	ory and	Lab									
OBJECTIVE:													
	•			_				processor	s and co	ontrolle	ſs.		
To learn		•		•	_	_							
 To design 	_			•		_							
				oncepts	of the pe	eriphera	l device	s with pro	cessors				
COURSE OUTCOME													
Upon the completion of													
CO1					itecture o								
CO2	Ability	to unde	erstand t	he archi	itecture o	of 8051	microco	ntroller					
CO3	Ability	to unde	erstand t	he inter	facing of	f differe	nt perip	heral devi	ces witl	h the m	cropro	ocessor	S
CO4	Unders	stand the	e applica	tions of	microp	rocessoi	s & mic	rocontrol	ers				
CO5	Illustra	ate the a	pplication	ons of 80	051								
Mapping of Course O	utcome	s with P	rogran	Outco	mes (PC	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11 P	O12
CO1	2	3	3	3	2	1	1	2	1	2	2		2
CO2	3	3	3	3	2	1	2	2	2	2	2		2
CO3	2	3	3	3	3	2	2	2	1	3	2		2
CO4	3	3	3	3	3	1	2	2	2	2	2		3
CO5	3	3	3	3	3	1	2	2	1	1	3	;	3
COs / PSOs		PSO1			PSO2			PSO3			PS	SO4	
CO1		3			3			3				1	
CO2		2			3			3				1	
CO3		3			3			3				2	
CO4		3			3			3				1	
CO5		2			3			3				3	
3/2/1 indicates strengt	h of cor	relation	1 3 – H	igh, 2 -	- Mediu	m, 1 −]	Low			•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Tachnical Skill Soft Skills					

SUBJECT CODE	SUBJECT NAME	Ty/L b/ET L	L	T/ SLr	P/R	С
BEC18I02/	MICROPROCESSORS AND MICROCONTROLLERS	Tv	3	0/0	0/0	3
BEC20I02						

UNIT I 16 BIT MICROPROCESSOR

9 Hrs

Evolution of processors – 8086 Architecture – Functional Diagram – Register organization – Memory Addresses – Minimum mode – Maximum mode – Interrupts of 8086

UNIT II INSTRUCTION SET AND ALP

9 Hrs

Instruction Formats – Addressing modes – Instruction set – Simple programs involving logical, branch and call instructions – sorting – string manipulations

UNIT III INTERFACING

9 Hrs

Memory Interfacing – I/O Interfacing – Programmable Peripheral Interface 8255 – USART – DMA controller – Programmable Interval Timer 8253

UNIT IV MICROCONTROLLER

9 Hrs

Introduction – 8051 Architecture – I/O Ports – Memory Organization – Addressing modes – Interrupts

UNIT V APPLICATIONS

9 Hrs

Instruction set of 8051 – Applications – Simple programs – Interfacing with ADC- Interfacing with DAC- Stepper Motor – Traffic Light Controller

Total Hours: 45

TEXT BOOKS:

- 1. Ray A.K. & Bhurchandi K.M. (2013) Advanced Microprocessors and Peripherals, Tata McGraw Hill Education pvt Ltd
- 2. Douglas v Hall. (2006) Microprocessors and Interfacing (2nd ed.), Tata McGraw Hill Publishing company Limited

- 1. Badri Ram. (2006) Advanced Microprocessors and Interfacing, Tata McGraaw Hill Publishing company limited
- 2. Kenneth J. Ayala (2008) "The 8051 Micro Controller", 3rd Edition, Thomas Delmar Learning.

Subject Code:BHS18NC1/	BHS20NC1		ŤI		IAN CO	NSTITUT	ION	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
L : Lecture T : Tut	orial Clr · Cu	marvisad I		quisite:		Pasaarah ('· Crodite	Ty	2	0/0	0/0	NC
T/L/ETL: Theory/		•		gr.rn	Jeci K . I	Research	. Credits					
OBJECTIVES:												
To understTo Know t	eanoverview of candthepreamble the fundamenta cand the function	eandtheba lrights, du	sic stru tiesandt	ctures o thedirec	ftheCons tiveprinc	titution. iplesof stat						
COURSE OUTC	OMES (COs)	After stu	dying t	this cou	rse the s	tudent wo	uld be ab	le to				
CO1	To providea	anoverviev	w of the	history	ofthemak	ingofIndia	nConstitut	tion				
CO2	To understa	ındtheprea	mblean	dthebas	ic structu	res oftheC	onstitutio	n.				
CO3	To Know th	ne fundam	entalrig	hts, dut	iesandthe	edirectivep	rinciplesof	f state pol	licy			
Mapping of Cour	se Outcomes w	vith Progr	ram Ou	tcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	3	1	1	1	1	-	-
CO2	-	-	-	-	-	3	1	1	1	1	-	-
CO3	-	-	-	-	-	3	1	1	2	-	-	-
COs / PSOs]	PSO1			P	SO2		PS	03		PS	O4
CO1		1				1		2	2			1
CO2		1				1		2	2		1	1
CO3		1				1		2	2		-	1
3/2/1 indicates stre	ngth of correla	ation 3 –	High, 2	2 – Med	lium, 1 -	- Low						
Category	Basic	Engg Sciences	Humanities &Social	Sciences Program core	Program Electives	Open Electives	Practical/ Project	Internships / Technical	277	Soft Skills		
	Ba	En	Hu &	Sc	Pre	Or Ek	Pra	Int	<u> </u>	Soft Skill		

SUBJECT CODE	SUBJECT NAME	Ty/Lb/ETL	L	T/ SLr	P/R	С
BHS18NC1/ BHS20NC1	THEINDIAN CONSTITUTION	Ту	2	0/0	0/0	NC

UNIT I 3Hrs

The HistoryoftheMakingof IndianConstitution, Preamble andthe BasicStructures

UNIT II 3Hrs

FundamentalRightsand Duties, Directive Principles of State Policy

UNIT III 3Hrs

Legislature, Executive and Judiciary

UNIT IV 3Hrs

EmergencyPowers

UNIT V 3Hrs

Special Provisions for Jammu and Kashmir, Nagalandand Other Regions, Amendments

Total Hours: 15

TEXT BOOKS:

1. D D Basu, Introductiontothe Constitution of India, 20th Edn., Lexisnexis Butterworths, 2012.

- Rajeev Bhargava (ed), Ethics and Politics of the Indian Constitution, Oxford University Press, NewDelhi, 2008.
- 2. GranvilleAustin, TheIndianConstitution: CornerstoneofaNation, OxfordUniversityPress, Oxford, 1966.
- 3. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas, Practices, Controversies, Permanent Black, NewDelhi, 2002.
- 4. SubhashC.Kashyap,OurConstitution,NationalBookTrust, NewDelhi, 2011.

Subject Code:BHS18NC2/BH	S20NC2		KNOWLEDGE							T/ S.Lr	P/R	С
			Prerequ	isite: NIL	,			Ту	2	0/0	0/0	NC
L : Lecture T : Tutoria T/L/ETL : Theory/Lat			_	P : Projec	t R : Rese	arch C:	Credit	ts				
OBJECTIVES:												
To understand	the Pre- colo	onial and	Colonial	Period, I	ndian Tra	ditional	Know	ledge	Syste	m		
 To understand 												
• To Know the	-	ysics and	l Chemist	try, Tradi	tional Art	and Ar	chitect	ure ar	ıd Vas	tu Shasl	ntra, Ast	ronomy
and AstrologyTo understand		f Mathan	natice Ax	viation Te	chnology	in Anci	iant In	dia C	rafte a	nd Trad	o in And	iont India
										nu 11au	e III Alic	Tent muia
COURSE OUTCOM												
CO1	To underst	and the P	re- colon	nial and C	olonial P	eriod, In	idian T	[raditi	onal K	Inowled	ge Syste	m
CO2	To underst	andtheTr	aditional	Medicino	e, Traditio	nal Pro	ductio	n and	Const	ruction [Γechnol	ogy
CO3	To underst in Ancient		Origin of	Mathema	tics, Avia	tion Tec	chnolo	gy in	Ancie	nt India,	Crafts a	and Trade
Mapping of Course (am Outc	omes (P() e)							
wapping of course (Juconies wi	Al I Togic	am Outc	onics (1 (<i>)</i>							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	3	1	-	2	-	•	-	2	-	1
CO2	-	3	3	1	-	2	-	-	-	2	-	1
CO3	-	3	3	1	-	2	-	-	-	2	-	1
COs / PSOs		I	PSO1		P	SO2		PSO:	3		PSO ₄	ļ
CO1			1			1		2			1	
CO1 CO2			1			1 1		2 2			1 1	
CO2	th of correla	tion 3-	1	– Mediu	m, 1 – L	1		2				
CO2 CO3	th of correla	tion 3-	1	– Mediu	m, 1 – L	1		2				
CO2 CO3	th of correla	tion 3-	1			1	ject	2				
CO2 CO3 3/2/1 indicates streng	th of correla	tion 3-	1 1 - High, 2			1	Project	2 2				
CO2 CO3 3/2/1 indicates streng			1 1 - High, 2	es es		1 1 ow	al/ Project	2 2				
CO2 CO3		ses	1 1 - High, 2	es es		1 1 ow	actical/ Project	2 2	ft :IIs			
CO2 CO3 3/2/1 indicates streng	Basic Sciences	Engg Sciences	1 1 - High, 2		Program core Program Electives	1 1 ow	Practical/ Project	2	Soft Skills			

SUBJECT CODE	SUBJECT NAME	Ty/Lb /ETL	L	T/ SLr	P/R	С
BHS18NC2/		Tv	2	0/0	0/0	NC
BHS20NC2	THEINDIAN TRADITIONAL KNOWLEDGE	- 3		3, 0	3.0	

UNIT I 3Hrs

Historical Background: TKS During the Pre- colonial and Colonial Period, Indian Traditional

Knowledge System

UNIT II 3Hrs

Traditional Medicine, Traditional Production and Construction Technology

UNIT III 3Hrs

History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology

UNIT IV 3Hrs

Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

UNIT V 3Hrs

TKS and the Contemporary World, TKS and the Indian Union, TKS and IT Revolution

Total Hours: 15

TEXT BOOKS:

- 1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)
- 2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products

Subject		Su	bject Na	ame :				Ty/			T /						
BCS20	402				3.44			Lb/		L	S.	P/R	C				
					and its A	Applica	tions	ETL			Lr	2/0	2				
		Pre	erequisi	te: NIL				ETL		1	0/1	3/0	3				
L: Lect	ure T	: Tuto	rial S.	Lr : Suj	pervised	Learnir	ng P:P	roject l	R : Res	earch (C: Credit	S	I.				
Ty/Lb/E			//Lab/E	mbedde	d Theor	y and L	ab										
OBJEC																	
•										methodologies of NeuralNetwork							
•		_		-	applicat				-	_							
			•			ge in na	andling	and and	aiyzing	real w	oridapp	ications.					
COURS																	
CO1				naracte	ristics o	f deep	learning	g mode	els that	are us	eful to s	solve real-					
000	_	ldprob															
CO2						_				using deepnets.							
CO3		•			opriate	deep le	arning	algorit	hms fo	for analyzing the data for							
~~.	_	•	probler														
CO4					ep learn												
CO5		_			res to a				he dev	elope	lmodel.						
Mappir																	
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12				
CO1		3	3	3	3	2	3	2	2	3	3	3	3				
CO2		3	3	3	3	2	3	2	2	3	3	3	3				
CO3		3	3	3	3	1	3	2	2	3	2	3	3				
CO4		3	3	3	3	2	3	2 2	2 2	3	2 2	3	3				
COs /			O1	3	PSO2			PSO3		3		PSO4	3				
PSOs		13	O1		1302		J	1303				1504					
CO1		-	3		3			2				2					
CO2			3		3			3				3					
CO3			3		3			3				3					
CO4			3		3			2				3					
CO5			3		2			3		3							
3/2/1 in	dicate			correla	tion 3	– High	, 2 – Mo		1 – Lo								
			0			<i>8</i>				_							
		S	b 0	ar	ore		ive		ps /								
			<u> </u>	l or u													
ì	o lo	cien	ering s	ities Scie	n Cc	u Se	lect	/ Te	ishi cal	ills							
, m	liegoi y	c Scien	ineering nces	nanities and al Sciences	gram Co	gram tives	n Elect	tical / ect	ternshi hnical	Skills							
1000	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS20AET2	Deep Learning and its Applications	ETL	1	0/1	3/0	3

UNIT I MACHINE LEARNING BASICS

9 Hrs

Learning algorithms, Maximum likelihood estimation, Building machine learning algorithm, Neural Networks Multilayer Perceptron, Back-propagation algorithm and its variants Stochastic gradient decent, Curse of Dimensionality

UNIT II DEEP LEARNING ARCHITECTURES

9 Hrs

Machine Learning and Deep Learning, Representation Learning, Width and Depth of Neural Networks, Activation Functions: RELU, LRELU, ERELU, Unsupervised Training of Neural Networks, Restricted Boltzmann Machines, Auto Encoders, Deep Learning Applications

UNIT III CONVOLUTIONAL NEURAL NETWORKS

9 Hrs

Architectural Overview, Motivation, Layers, Filters, Parameter sharing, Regularization, Popular CNN Architectures: ResNet, AlexNet – Applications

UNIT IV SEQUENCE MODELLING -RECURRENT AND RECURSIVE NETS

9 Hrs

Recurrent Neural Networks, Bidirectional RNNs, Encoder-decoder sequence to sequence architectures - BPTT for training RNN, Long Short Term Memory Networks.

UNIT V AUTO ENCODERS

9 Hrs

Under complete Auto encoder, Regularized Auto encoder, stochastic Encoders and Decoders, Contractive Encoders.

Total hours:45

TEXT BOOKS

- 1. Ian Goodfellow, YoshuaBengio and Aaron Courville, "Deep Learning", MIT Press, 2017.
- 2. Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017
- 3. Umberto Michelucci "Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks" Apress, 2018.

REFERENCE BOOKS

- 1. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.
- 2. EthemAlpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.
- 3. Giancarlo Zaccone, Md. RezaulKarim, Ahmed Menshawy "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.
- 4. Antonio Gulli, Sujit Pal "Deep Learning with Keras", Packt Publishers, 2017.
- 5. François Chollet "Deep Learning with Python", Manning Publications, 2017.

Subject Code:	Subjec	t Name	:						Ty/		T /	P/R	C
BCS18L03/BCS20L03	D	ATABA	SE MA	NAGE	MENT S	SYSTE	MS LAP	(Lb/ ETL	8	.Lr		
	Prereq	uisite: B	CS18L0)1					Lb	0	0/0	3/0	1
L : Lecture T : Tutorial					Project	R : Res	earch C	: Credits					
Ty/Lb/ETL: Theory/La	b/Embe	dded Th	eory and	Lab									
OBJECTIVE:													
 To create a data 			_		-	_		_					
 Understand the 				constrai	nts, refe	rential ir	ntegrity o	constraints	s, trigger	s, assert	ions.		
COURSE OUTCOME													
CO1			•			_	tatemen	ts includin	ig DDL,	DML a	nd DC	L	
G04			perform o				1	. 1	1 11	1 1	. 1	•	
CO2								to apply e					
CO3								according	to well l	known d	esign p	principl	.es
~~.			ta retrie										
CO4	Under	stand the	e problei	n and ap	oply the	program	ıming kr	owledge f	for deter	mining s	solutio	ns.	
CO5	Will b	e able to	Design	a databa	ase by ar	nnlying t	he know	vledge.					
							THE RITO V	, reage.					
Mapping of Course Ou													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO		O12
CO1	2	3	2	1	3	3	2	2	2	2	1		2
CO2	3	3	3	2	3	2	1	1	3	3	2		2
CO3	2	2	3	2	2	3	1	1	3	2	2		3
CO4	3	3	3	3	3	3	2	1	3	2	3		2
CO5	3	3	2	2	3	3	2	2	3	1	3		3
COs / PSOs		PSO1			PSO2			PSO3			PS	504	
CO1		2			3			3				3	
CO2		3			3			3				3	
CO3		2			3			3				2	
CO4		2			3			3				2	
CO5		2			3			3				3	
3/2/1 indicates strengtl	of corr	elation	3 – Hi	gh, 2 – N	Medium	$\frac{1-L_0}{L_0}$	w				1		
		suces	Social		Se		13	echnical					
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills					
							1						

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18L03/	DATABASE MANAGEMENT SYSTEMS LAB	Lb	0	0/0	3/0	1
BCS20L03						

LIST OF EXPERIMENTS

I. Program to learn DDL and DML commands

- 1. Execution of data descrption language commands
- 2. Execution of data manupulation language commands
- 3. Execution of data control language commands
- 4. Execution of transation control language commands
- 5.Insert command
- 6. Select, from and where clause
- 7. Set operation [union, intersection, except]
- 8. String operations
- 9. Nested queries
- 10. Join operation
- 11. Modification of the database

II. PL / SQL programs

- 1. Control statements (for loop)
- 2. Control statements (while loop)
- 3. Control statements (for reverse loop)
- 4. Control statements (loop end loop)
- 5. Sum of even numbers
- 6. Sum of odd numbers
- 7. Series generation
- 8. Implementation of sub-program
- 9. Implementation of cursor using pl/sql
- 10. Control statement (if-else end if)

DES	IGN AN		LYSIS	OF AL	GORIT	THMS I	LAB	LI ET	b/ L			r		C
						. ~	~		b	0	0/0	3/	0	1
			_	roject F	R : Resea	arch C:	Credits	5						
bedded	Theory a	and Lab												
1 6 1	. 1	1												
		•		of algor	rithms									
(COs):	(3-5)													
Know	how to	design	algorith	ms hat e	mploy v	arious s	trategy	у.						
Can so	olve prol	blems us	sing fund	damenta	l graph	algorith	ms.							
algorit	hms tha	t emplo	y randor	nization	ı .									
					ck track	ing and	Binary	/ sear	ch alg	orithi	n			
1														
				PO5	PO6				PO9	PO	10 l		PO)12
			2	1	1		2		1	1				1
3	3	2	1	2	1	2	2		3	2		2	4	2
2	2	2	3	3	2	1	2		3	1		2	4	2
3	2	2	2	2	1	2	2		3	2		2	1	2
3	2	1	3	1	2	3	2		2	1		1		1
	PSO1			PSO2			PS	03				PSO4		
	3			3			3	3				2		
	3			3			2	2				1		
	2			2			2	2				3		
	3			2			2	2				2		
	3			2			1					3		
f correla	ation 3	– High	, 2 – Me	dium,	1 – Lov	7				· ·				
Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	✓ Practical / Project	Internships / Technical Skill	Soft Skills						
	Prerequence of correlations of correlations of the fundation of the fundat	Prerequisite: S.Lr: Supervised bedded Theory state fundamental how to analyze to the fundamental how how analyze to the fundamental how how how how analyze to the fundamental how how how how analyze to the fundamental how	Prerequisite: S.Lr: Supervised Learning bedded Theory and Laborate the fundamental algorith show to analyze the performance of the fundamental algorith show to analyze the performance of the fundamental algorith show to design and the fundamental algorith show to analyze the algorithms that employ algorithms algorithms that employ algorithms that employ algorithms algorithm algorithms algorithms algorithms algorithm algorithms algorithm algorithms algo	Prerequisite: S.Lr: Supervised Learning P: Pubedded Theory and Lab the fundamental algorithms how to analyze the performance (COs): (3-5) Know how to design algorithm algorithms that employ random algorithms alg	Prerequisite: S.Lr: Supervised Learning P: Project Fibedded Theory and Lab the fundamental algorithms how to analyze the performance of algorithms how to analyze the performance of algorithms how to design algorithms hat elemental the fundamental algorithms have algorithms that employ randomization in Evaluate and apply classical sorting, somes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 3 3 3 2 1 2 2 2 2 3 3 3 3 2 1 2 4 2 2 2 2 5 3 3 3 7 7 7 7 Telephone of AL Project Fiberdal Project Fib	Prerequisite: S.Lr: Supervised Learning P: Project R: Researchedded Theory and Lab the fundamental algorithms how to analyze the performance of algorithms how to analyze the performance of algorithms hat employ v. Can solve problems using fundamental graph Know how analyze the average-case running algorithms that employ randomization. Evaluate and apply classical sorting, searching Create and design programs using Back track tomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prerequisite: B.Lr: Supervised Learning P: Project R: Research C: obedded Theory and Lab the fundamental algorithms how to analyze the performance of algorithms (COs): (3-5) Know how to design algorithms hat employ various so algorithms that employ randomization. Evaluate and apply classical sorting, searching, optim Create and design programs using Back tracking and tomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 2 1 1 1 1 1 3 3 3 2 1 2 1 2 1 2 2 2 2 2 3 3 3 2 1 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Prerequisite: S.Lr: Supervised Learning P: Project R: Research C: Credits bedded Theory and Lab the fundamental algorithms how to analyze the performance of algorithms how to analyze the performance of algorithms (COs): (3-5) Know how to design algorithms hat employ various strategy. Can solve problems using fundamental graph algorithms. Know how analyze the average-case running times of randor algorithms that employ randomization. Evaluate and apply classical sorting, searching, optimization Create and design programs using Back tracking and Binary omes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 3 2 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2	Prerequisite: Later: Supervised Learning P: Project R: Research C: Credits ibedded Theory and Lab the fundamental algorithms how to analyze the performance of algorithms (COs): (3-5) Know how to design algorithms hat employ various strategy. Can solve problems using fundamental graph algorithms. Know how analyze the average-case running times of randomized algorithms that employ randomization. Evaluate and apply classical sorting, searching, optimization and Create and design programs using Back tracking and Binary searones with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 3 2 1 1 1 1 1 2 2 2 3 2 2 2 2 2 1 2 2 2 3 3 2 1 1 2 1 2 2 3 3 2 1 2 1 2 2 4 3 2 1 2 2 2 5 3 2 1 3 1 2 1 2 2 6 3 2 2 2 2 2 2 1 2 2 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DESIGN AND ANALYSIS OF ALGORITHMS LAB Prerequisite:	DESIGN AND ANALYSIS OF ALGORITHMS LAB Prerequisite: S.Lr: Supervised Learning P: Project R: Research C: Credits bedded Theory and Lab the fundamental algorithms how to analyze the performance of algorithms (COs): (3-5) Know how to design algorithms hat employ various strategy. Can solve problems using fundamental graph algorithms. Know how analyze the average-case running times of randomized algorithms algorithms that employ randomization. Evaluate and apply classical sorting, searching, optimization and graph algor Create and design programs using Back tracking and Binary search algorithmomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 3 3 3 3 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1	DESIGN AND ANALYSIS OF ALGORITHMS LAB Lb/ ETL S.L. Prerequisite: Lb 0 0/0 S.Lr : Supervised Learning P : Project R : Research C: Credits bedded Theory and Lab the fundamental algorithms how to analyze the performance of algorithms the fundamental algorithms had employ various strategy. Can solve problems using fundamental graph algorithms. Know how to design algorithms had employ various strategy. Can solve problems using fundamental graph algorithms. Know how analyze the average-case running times of randomized algorithms, and algorithms that employ randomization. Evaluate and apply classical sorting, searching, optimization and graph algorithms Create and design programs using Back tracking and Binary search algorithms Create and design programs using Back tracking and Binary search algorithms Total Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 1 3 3 2 1 2 1 2 2 3 3 2 3 2 2 2 2 3 3 2 1 2 1 2 3 3 2 3 2 1 3 1 2 3 2 2 3 3 2 3 2 3 3 3 2 1 3 1 2 3 2 2 3 3 2 3 3 3	DESIGN AND ANALYSIS OF ALGORITHMS LAB Lb	DESIGN AND ANALYSIS OF ALGORITHMS LAB Lb/ ETL Lb 0 0/0 3/0

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18L04/BCS20L04	DESIGN AND ANALYSIS OF ALGORITHMS LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Sort a given set of elements using the Quicksort method and determine the time required to sort the elements.
- 2. Using OpenMP, implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements.
- 3. Implement 0/1 Knapsack problem using Dynamic Programming
- 4. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
- 5. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
- 6. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm
- 7. Implement N Queen's problem using Back Tracking.
- 8. Implementation of BINARY SEARCH algorithm

Subject Code: BEC18IL2/BES20		ıbject N		OPROC					Ty/ Lb/	′		T/ S.Lr	P/R	C
	D.		te: BEC		KOLLE	KS LA	AD .		ETI Lb			0/0	3/0	1
L : Lecture T : Tut					D · Dro	ioot D	· Pagas	arch C				U/U	3/0	1
Ty/Lb/ETL : Theo					•	ject K	. Kesea	arch C	. Creur	ıs				
OBJECTIVES:	1 y/ Lao/ 1	mocaa	d Theory	and Lac	,									
• To learn th	ne assem	bly land	nage pro	orammin	σ of 808	6								
• To learn th														
To underst							vices w	ith pro	ocessor	s				
COURSE OUTC				r 10 01 till	- 1-1-1-10		. 1000 77.	pr	. 3 2 3 5 0 1	-				
COURSE OUTCO			understa	nd the P	rooramm	ning of	8086 n	nicron	rocesso	or				
CO2			understa											
CO3			nd the app											
Mapping of Cour							202010 0	- 111101	0001111	911415				
COs/POs	PO1	PO2	PO3	PO4	PO5	PC)6]	PO7	PO8	PC)9	PO10	PO11	PO12
CO1	3	2	1	1	2	1		1	1	1		1	1	2
CO2	3	2	1	1	2	1		1	1	1		1	1	2
CO3	3	2	1	1	2	1	-	1	1	1		1	1	2
COs / PSOs	PS	O1	PS	O2]	PSO3				•		PSO4		
CO1	3	3	,	2		1						1		
CO2		3	,	2		1						1		
CO3	•	3		2		1						1		
3/2/1 indicates str	ength o	f correla	ation 3	- High, 2	2 – Medi	ium, 1	-Low	V					, ,	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills				
							✓							

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BEC18IL2/BES	MICROPROCESSORS AND MICROCONTROLLERS	Lb	0	0/0	3/0	1
20IL2	LAB	Lo	O	0/0	3/0	1

LIST OF EXPERIMENTS

8086 Microprocessor:

- 1. Arithmetic operations
- 2. Block Movement of Data
- 3. Square and square root
- 4. Searching and sorting

8051 Microcontroller:

- 1. Arithmetic operations
- 2. Block Movement of Data
- 3. Square and square root
- 4. Searching and sorting

Interfacing:

- 1. Traffic light Controller
- 2. Stepper Motor Controller
- 3. Waveform Generation
- 4. Matrix Display

Subject Code: BCS1 BCS2	8 TS 1	/	bject N	TEC		AL SK				Ty/ Lb/ ET L	L	T/ S.I r		R C
DC32	.0151		erequisi	te:						Lb	0	0/0) 3/0) 1
				Lr : Supe mbedded			_	Project	R : Reso	earch C	C: Cred	its	•	
OBJEC	CTIV	ES:												
•				ts expert				_						
•				sionals w					oral valu	ies.				
•	To ta	ıcılıtate	the stu	dents wit	h emer	ging tec	chnolog	У						
COUR	SE O	UTCO	MES (COs):(3	3- 5)									
CO1	Unc	lerstand	d the do	main spe	cific kr	nowledg	ge.							
CO2	Abl	e to ap	ply idea	listic, pra	actical a	and mor	al valu	es.						
CO3				merging										
Mappi	ng of	Course	Outco	mes with	ı Progi	ram Ou	itcomes	s (POs)						
COs/l	POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12
CO1		3	3	1	1	1	2	2	1	1	1	-	3	1
CO2		3	3	2	3	3	2	2	2	2	2	2	3	1
CO3		3	3	3	3	3	2	2	1	2	2	2	3	1
COs /P	SOs	PS	SO1		PSO	O2			PSO3				PSO4	
CO1			3		3	,			1				1	
CO2			3		3				1				3	
CO3			3		3				1				3	
3/2/1in	dicate	s Strei	ngth of	Correlat	tion 3	8- High	, 2- Me	dium, 1	1-Low					
Cotemony	Catcgory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project		Internships /	recillical Skill			Soft Skills
										~				

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18TS1/ BCS20TS1	TECHNICAL SKILL I (EVALUATION)	Lb	0	0/0	3/0	1

OBJECTIVES:

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

Ty/

L

T/

 \mathbf{C}

P/R

Subject Code:

Subject Name:

BEN18SI BEN20SI			3		SOFI	Γ SKILL	T			Lb/ ETL S.Lr										
DEN2031	IX1				SOF	SKILL	<i>,</i> 1			ETL 0 0/0 3/0 1										
T T 4	T. T.		requisite		17	· D D	D	. D	1.0.0		0	0/0	3/0) 1						
T/L/ETL				•		_	roject R	: Rese	earch C: Cı	edits										
OBJECT																				
•						ous top co	ompanies	s helpii	ng them im	prove the	eir skill	l set ma	trix, lea	ding to						
			ositive fr				C	11.1	•.	. 11 1	.1		OT II							
•	resu		ients be a	iware of	various	tecnniqu	es of can	aidate	recruitmen	it and nei	p tnem	prepare	ecvs	and						
•			lent how	to face y	various ty	vnes of i	nterview	nrena	ring for HI	? technic	al inter	rviews								
•		_			-	_			oresentation				ious mo	ock						
		ions.	· · · · · · · · · · · · · · · · · · ·	10,000	. , 0	10000115,	11011101010	1			Perro		10000	, , , ,						
COURSI	E OUT	COME	S (COs)	: (3-5)																
	•																			
CO1							_		skills amo	-										
CO2				candida	te recruit	ment tec	chniques	like g	roup discu	ssion, in	terview	s and b	e able	to prepa						
002		and res				1.1		1 C T	(D. 1, 1	. 1.										
CO3	_								R and tech		rviews	S								
CO4							<u> </u>	ning m	ock session	ns.										
Mapping COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	7 PO8	PO9	PO	110	PO11	PO12						
COS/FOS	•						2	2		2		3	2	3						
		1	1	1	1	1			3											
CO2		1	1	1	1	1	2	2	3	2	3	3	2	3						
CO3		1	1	1	1	1	2	2	3	2	3	3	2	3						
CO4		1	1	1	1	1	2	2	3	2	3	3	2	3						
COs / PS	Os		PS	01	1		PSO2		PSC	D3			PSO4	<u>.I.</u>						
CO1				1			1		3				1							
CO2				1			1		3				1							
CO3				1			1		3				1							
CO4				1			1		3				1							
3/2/1 indi	icates s	strength	of corr	elation	3 – High	h, 2 – Mo	edium, 1	1 – Lo	W	1	1	_	,							
		ses		ities and Sciences	J		/es		cill											
	>	Basic Sciences	ing	Humanities and Social Sciences	Program Core		Open Electives	_	Internships / Technical Skill	S										
	Category	Sci	Engineering Sciences	uniti I S	am	Program Electives	Ele	cal	Internships / Technical Si	Soft Skills										
	ate	ısic	lgin ien	Human Social	ogra	ogra ecti)en	Practical Project	chn	eft S										
		$\mathbf{B}a$	En	Ht So	Pr	Pr Ele	Of	Pr.	Int Te	So										
	Ī									✓										
			1					1												

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BEN18SK1/	SOFT SKILL I	ETL	0	0/0	3/0	1
BEN20SK1						

UNIT I 6 Hrs

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

UNIT II 6 Hrs

Group discussions / Do's and don'ts – handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

UNIT III 6 Hrs

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions.

UNIT IV 6 Hrs

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

UNIT V 6 Hrs

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Hours: 30

SEMESTER - V

Subject Code: BCS18006/ BCS20006	Subject Name: OPERATING SYSTEMS	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
	Prerequisite: BCS18004	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- Understand the concepts of Operating System and process.
- Illustrate the Scheduling of a processor for a given problem instance, identify the dead lock situation and provide appropriate solution, analyze memory management techniques and implement page replacement Algorithm, understand the implementation of file systems and directories.
- To appreciate emerging trends in operating systems.

COURSE OUTCOMES (COs):	(3-5)
-------------------	-------	-------

CO1	Master functions, structures and history of operating systems
CO2	Master understanding of design issues associated with operating systems
CO3	Master various process management concepts including scheduling, synchronization, deadlocks and multithreading
CO4	Master concepts of memory management including virtual memory
CO5	Master issues related to file system interface and implementation, disk management

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	1	1	1	1	1	2	2	2
CO2	3	3	2	1	1	1	2	1	2	2	2	2
CO3	3	3	2	1	2	1	2	1	1	1	1	2
CO4	3	3	2	1	1	1	1	1	2	1	2	2
CO5	3	3	2	2	2	1	2	1	1	1	2	2
COs / PSOs	PS	01	PS	O2	PS	O3	P	SO4				
CO1	3	3	3	3		1		2				
CO2	3	3	3	3		1		2				
CO3	3	3	3	3		1		2				
CO4	3	3	3	3	2	2		2				
CO5	3	3	3	3	,	2		2				
3/2/1 indicates str	ength of	correlat	tion 3 –	High, 2	– Medi	um. 1 –	Low		•		•	

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				√							

UBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18006/BCS20006	OPERATING SYSTEMS	Ту	3	0/0	0/0	3

UNIT I CONCEPTS & PROCESSES

9 Hrs

Computer system architecture-operating system structure-operations-management of process, memory, storage-protection and security-Operating System Services-System Calls-types-System Programs-System Structure-Virtual Machines-System Design and Implementation- Process concept-Process Scheduling-Operation on Process-Cooperating Processes- Inter Process Communication

UNIT II PROCESS MANAGEMENT, SYNCHRONIZATION AND DEADLOCKS

9 Hrs

Threads-Multithreading Models. CPU Scheduling concepts-Scheduling Criteria-Scheduling Algorithms-Threads and Multiple-Processor Scheduling-Real Time Scheduling- - Process Synchronization-The Critical Section Problem-Synchronization-Petersonsolution,mutex-Hardware-Semaphores monitor-Deadlocks-Deadlock Characterization-Methods of Handling Deadlocks-Deadlock Prevention-Deadlock Avoidance-Deadlock Detection-Recovery form Deadlock

UNIT III MEMORY MANAGEMENT

9 Hrs

Main Memory-Swapping-Contiguous Memory Allocation - Address Translation - Paging - Segmentation - Virtual memory-Demand paging-page replacement-thrashing-allocating Kernal memory.

UNIT IV STORAGE MANAGEMENT

9 Hrs

File Sand Secondary Storage Management: File Concepts - Access Methods - Directory Structure - File System Mounting - File Sharing - Protection - File System Structure - Implementation - Recovery - Disk Structure - Disk Scheduling - Disk Management

UNIT V CASE STUDY 9 Hrs

Special purpose systems -Open source operating systems-Operating system generation-Examples of IPC systems-threading Issues-Operating system examples- Algorithm Evaluation of scheduling algorithms- Classical Problems Of Synchronization-Synchronization examples-Intel 32 bit and 64 bit architectures-ARM architecture-STREAMS.

TEXT BOOK:

Total Hours: 45

1. Silberschatz. Galvin. Gagne (2012) Operating System Concepts (9th ed.), John Wiley

REFERENCE BOOKS:

- 1. D.M.Dhamdhere. D. M. (2012) Operating Systems, (3 rd ed.), Tata McGraw Hill
- 2. Tanenbaum (2015) Modern Operating Systems, Pearson Publication.
- 3. William Stallings (2015) Operating Systems (8 th ed.) Prentice Hall of India

Subject Code: BCS18007/BCS20007	Subjec	Subject Name : COMPUTER NETWORKS								L	T/ S.Lr	P/R	С
	Prerec	quisite:	NIL						Tv	3	0/0	0/0	3
L : Lecture T : Tutorial				earning	P : Pr	oject R	R : Rese	arch (C: Credi				
T/L/ETL: Theory/Lab/						J							
OBJECTIVE:													
The students will	l be hav	ve knov	vledge	of the	networl	ks func	tions						
 To understand h 													
 To learn about the 													
To study about				ılgorith	ms for	smooth	data co	ommu	nication	1			
COURSE OUTCOME													
CO1								es &	OSI Lay	yers for	Commu	nication	
CO2	Know	nowledge on IP addresses and protocols.											
CO3	Have	knowle	dge on	how to	avoid 1	the erro	r and c	onges	tion on	networ1	k using a	lgorithm	S
CO4					rithms								
CO5	Will u	ındersta	and how	layers	of netv	vorks v	vork.						
Mapping of Course Or	utcome	s with	Progra	m Out	comes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	208	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	1		3	3	3	3	2
CO2	3	2	1	2	2	3	3		1	3	3	3	2
CO3	3	2	1	3	3	3	2		2	3	3	3	2
CO4	3	3	2	3	1	3	1		3	2	3	3	2
CO5	3	2	2	2	1	3	3		3	3	3	3	3
COs / PSOs		PSO1			PSO2	ı		P	SO3	ı		PSO4	
CO1		3			3				3			3	
CO2		3			2				3			2	
CO3		3			2				3			2	
CO4		3			1				3			2	
CO5		3			3				3			2	
3/2/1 indicates strengt	h of cor	relatio	n 3 –	High, 2	2 – Med	dium,	1 – Lov	W			•		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
				•									

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18007/BCS 20007	COMPUTER NETWORKS	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION

9 Hrs

Introduction to computer networks and uses - Network: devices, topology, types - Reference model - The physical layer - The theoretical basis for data communication - Transmission media: Guided and unguided- Public Switched Telephone Network.

UNIT II DATA LINK LAYER

9 Hrs

Data link layer design issues - Error detection and correction - Sliding window protocols- HDLC - Channel access on links: SDMA - TDMA - FDMA - CDMA - ETHERNET - 802.11, 802.16 - Bridges and Switches-Bluetooth

UNIT III NETWORK LAYER

9 Hrs

Network layer design issues - Circuit switching - Packet switching - Virtual circuit switching-Routing algorithms - Congestion control algorithms - Internetworking- Network layer in Internet - IPV6

UNIT IV TRANSPORT LAYER

9 Hrs

Transport layer design issues - Transport protocols - Simple transport protocol - Internet transport protocols UDP, TCP - Flow Control - Congestion control - Congestion avoidance

UNIT V APPLICATION LAYER

9 Hrs

Domain name system - Electronic mail – Introduction to World Wide Web: HTTP, SNMP, Telnet, FTP, RTP.

Total Hours: 45

TEXT BOOKS:

- 1. Peterson Davie (2012) Computer Networks A System Approach (2nd ed.), Morgan Kauffman Harcourt Publishers.
- 2. James F. Kurose, Keith W. Ross Computer Networking: A Top-Down Approach / Edition 6, Pearson publication, 2012.

REFERENCE BOOKS:

- 1. Andrew S. Tanenbaum. David J. Wetherall ,"Computer Networks "5th Edition PHI, 2011
- 2. William Stallings," Data and computer communications", PHI, 2001
- 3. Douglas E. comer," Internetworking with TCP/IP-Volume-I", PHI, 5th edition 2006
- 4. Godbole, "Data communication and networking", TMH, 2004.
- 5. Forouzan B. A., "Data Communications and networking", TMH, 2003.

Subject Code: BCS18008/BCS20008	•	Subject Name : SYSTEM SOFTWARE AND PRINCIPLES OF COMPILER DESIGN								L	T/ S.Lr	P/R	С	
	Prereq	uisite: l	BCS180	003					Ty	3	0/0	0/0	3	
L : Lecture T : Tutorial	S.Lr : S	upervis	ed Lear	rning F	P: Proje	ect R:	Researc	ch C:	Credits					
T/L/ETL: Theory/Lab/En	nbeddeo	d Theor	y and L	_ab										
OBJECTIVE :														
 To understand the 				n softw	ares suc	ch as as	semble	r, inte	rpreter, li	nker, lo	ader and	compile	rs in	
the development														
 To develop a larg 							stem th	at imp	lements v	arious _l	phases of	a comp	iler	
such as the scanne				tor, and	d optim	izer.								
COURSE OUTCOMES														
CO1		Understand about the system softwares such as assembler, interpreter, linker, loader and compilers in the development of IT solutions.												
								_						
CO2									and Comp					
CO3		•	_	•					system th		ements v	arious pl	nases	
									or, and opt					
CO4		Identify the similarities and differences among various parsing techniques and grammar												
- CO -	transformation techniques. Design a simple compiler using the construction tools.													
CO5							uction t	ools.						
Mapping of Course Out							1 -							
COs/POs	PO1	PO2			PO5	PO6	PO7	PO8		PO9	PO10	PO11	PO12	
CO1	2													
CO1	3	1	1	1	2	I	2		1	2	3	2	1	
CO2	3	2	2	1	2	2	2		2	3	2	2	1 2	
CO2 CO3	3	2 2	2 3	1 2	2 2	2	2		2 3	3	2 3	3	3	
CO2 CO3 CO4	3 3 3	2 2 3	3 3	1 2 2	2 2 3	2 3	2 1 3		2 3 3	3 3	2 3 3	2 3 3	3	
CO2 CO3 CO4 CO5	3 3 3	2 2 3 3	2 3	1 2	2 2 3 3	2	2		2 3 3 3	3	2 3	2 3 3 3	3	
CO2 CO3 CO4	3 3 3	2 2 3	3 3	1 2 2	2 2 3	2 3	2 1 3	I	2 3 3	3 3	2 3 3	2 3 3	3	
CO2 CO3 CO4 CO5	3 3 3	2 2 3 3	3 3	1 2 2	2 2 3 3	2 3	2 1 3	I	2 3 3 3	3 3	2 3 3	2 3 3 3	3	
CO2 CO3 CO4 CO5 COs / PSOs	3 3 3	2 2 3 3 PSO1	3 3	1 2 2	2 3 3 PSO2	2 3	2 1 3	I	2 3 3 3 2 SO3	3 3	2 3 3	2 3 3 3 PSO4	3	
CO2 CO3 CO4 CO5 COs / PSOs CO1	3 3 3	2 2 3 3 PSO1 3	3 3	1 2 2	2 2 3 3 PSO2 2	2 3	2 1 3	I	2 3 3 3 2 SO3 2	3 3	2 3 3	2 3 3 3 PSO4 2	3	
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2	3 3 3	2 2 3 3 PSO1 3	3 3	1 2 2	2 2 3 3 PSO2 2	2 3	2 1 3	1	2 3 3 3 2 2 2	3 3	2 3 3	2 3 3 3 PSO4 2	3	
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3 3	2 2 3 3 PSO1 3 2 2	3 3	1 2 2	2 2 3 3 PSO2 2	2 3	2 1 3]	2 3 3 3 2 SO3 2 2	3 3	2 3 3	2 3 3 3 PSO4 2 2	3	
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3 3	2 2 3 3 PSO1 3 2 2 3 1	2 3 3 3 3	1 2 2 2 2	2 3 3 PSO2 2 3 1 1	2 3 3	2 1 3 3 3		2 3 3 3 2 2 2 1 3	3 3	2 3 3	2 3 3 3 PSO4 2 2 1	3	
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3 3 3	2 2 3 3 PSO1 3 2 2 3 1	2 3 3 3 3	1 2 2 2 2	2 3 3 PSO2 2 3 1 1	2 3 3	2 1 3 3	I	2 3 3 3 2 2 2 1 3	3 3	2 3 3	2 3 3 3 PSO4 2 2 1	3	
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3 3	2 2 3 3 PSO1 3 2 2 3 1	2 3 3 3 3	1 2 2 2 2	2 3 3 PSO2 2 3 1 1	2 3 3 3	2 1 3 3 3	Internships /	2 3 3 3 2 2 2 1 3	3 3	2 3 3	2 3 3 3 PSO4 2 2 1	3	

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18008/	SYSTEM SOFTWARE AND PRINCIPLES OF COMPILER	Tv	3	0/0	0/0	3
BCS20008	DESIGN		3	5, 0	0,0	3

UNIT I ASSEMBLERS & MACROS

6 Hrs

Overview of Language processors – Assemblers: Design of two pass assemblers - single pass assemblers MACRO: Macro definition- macro call – macro expansion- nested macroadvanced macro facilities.

UNIT II LINKERS & LOADERS

6 Hrs

Loaders and Linkers: Functions – design - bootstrap loader - machine dependent loader features - machine independent loader features - loader design options - Dynamic linking and Linkage Editors – Implementation Examples

UNIT III COMPILERS: GRAMMARS & AUTOMATA

9 Hrs

Structure of compiler-Languages –Context free grammar - regular expression - Recognizing of patterns - finite automation (deterministic & non deterministic) Conversion of NDFA to DFA - Conversion of regular expression to DFA – Thompson's construction- minimization of NDFA - Lexical analysis- handles - token specification - design of lexical analysis (LEX) - Automatic generation of lexical analyzer - input buffering - A language for specifying lexical analyzers - implementation of lexical analyzer.

UNIT IV SYNTAX ANALYSIS - PARSING

12 Hrs

Definition - role of parsers - top down parsing - bottom-up parsing - Left recursion - left factoring - Handle pruning , Shift reduce parsing - operator precedence parsing - FIRST- FOLLOW- LEADING- TRAILING- Predictive parsing - recursive descent parsing. LR parsing - LR (0) items - S.LR parsing - Canonical LR - LALR parsing - generation of LALR - error recovery

UNIT V SYNTAX DIRECTED TRANSLATION & CODE OPTIMIZATION

12 Hrs

Intermediate Languages - prefix - postfix - Quadruple - triple - indirect triples - syntax tree- Evaluation of expression - three-address code- Synthesized attributes - Inherited attributes - Conversion of Assignment statements- Boolean expressions - Backpatching - Declaration - CASE statements

CODE OPTIMIZATION: Local optimization- Loop Optimization techniques – DAG – Dominators- Flow graphs – Storage allocations- Peephole optimization – Issues in Code Generation.

Total Hours: 45

TEXT BOOKS:

- 1. Alfred V Aho, Jeffrey D Ullman, Ravi Sethi, "Compilers, Techniques, and Tools", Addison Wesley, 2006
- 2. Leland L Beck, D. Manjula, "System Software", III Edition, Pearson Education -- First Impression, 2007

REFERENCE BOOKS:

- 1. D.M.Dhamdhere (2009) Systems Programming and Operating Systems,(2nd ed.), Tata McGraw-Hill Publishing Company Ltd
- 2. John J Donavan (2009) System Programming, Tata McGraw- Hill Publishing Company Ltd
- 3. John R. Levine, "Linkers & Loaders", Morgan Kauffman, 2003.
- 4. Allen Holub I. (2007) Compiler Design in C, PHI
- 5. V Raghavan (2009) Principles of compiler, Tata Mc Graw Hill
- 6. Kenneth C Louden (2003) Compiler Construction Principles & Practice Thompson learning

Subject Code: BCS20A03	Subje	ct Name		g Data A	Analytic	es		I	Sy/ Lb/ TL		Γ/ Lr	P/R	C
	Prerec	uisite: H	BCS18E	206					Гу	3 0	/0	0/0	3
L : Lecture T : To		•			ning P	: Projec	t R : R		·	S	<u> </u>		
Ty/Lb/ETL: The						3							
OBJECTIVE:													
 To op 	ptimize	business	decisio	ons and	create c	ompetit	ive adva	antage witl	n Big D	ata anal	ytics		
• To ex	kplore th	ne funda	mental	concept	s of big	data an	alytics.						
 To le 	arn to a	nalyze t	he big d	lata usir	ıg intelli	igent tec	hniques	S.					
								n technique	es.				
		se vario		_		-							
		nd the ap											
					G & HI	VE in H	adoop e	cho systen	n.				
COURSE OUT		, ,	• •										
CO1		stand th											
CO2	_		_					ng Models					
CO3		Design the efficient method for data handling.											
CO4	Learn	Learn various techniques and implement in programming tools.											
CO5	Will u	nderstar	nd the a	pplication	on of ma	ap reduc	ce conce	pt					
Mapping of Cou	rse Out	tcomes	with Pr	ogram	Outcon	nes (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	012
CO1	3	3	2	2	3	3	2	3	2	2	2		3
CO2	3	3	2	3	2	3	2	1	3	2	3		3
CO3	3	3	2	3	2	2	3	3	3	3	2		3
CO4	3	3	2	3	2	2	3	2	2	1	3		2
CO5	3	3	2	3	2	3	2	3	3	3	2		3
COs / PSOs		PSO1			PSO2			PSO3			PSC	1	
CO1		3			3			2			3		
CO2		3			2			3			3		
CO3		3			3			2			3		
CO4		3			2			3			3		
CO5		3			3			2			3		
3/2/1 indicates st	rength	of corr	elation	3 – Hi	gh , 2 –	Mediun	n, 1 – I	Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Tachnical Still					
	В	ПN	ΞŠ	P.	<u> </u>	0	<u>P</u>	N N			1		

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/	L	T/ S.Lr	P/R	С
BCS20A03	BIG DATA ANALYTICS	Ту	3	0/0	0/0	3

UNIT I 9Hrs

Introduction to big data: Introduction to Big Data Platform — Challenges of ConventionalSystems-Intelligentdataanalysis—NatureofData-AnalyticProcesses and Tools - Analysis vsReporting.

UNITII 9Hrs

Mining data streams: Introduction To Streams Concepts — Stream Data Model and Architecture - Stream Computing - Sampling Data in a Stream-Filtering Streams— CountingDistinctElementsinaStream— EstimatingMoments—CountingOnenessin a Window—DecayingWindow-RealtimeAnalyticsPlatform(RTAP)Applications-CaseStudies-RealTimeSentimentAnalysis-StockMarketPredictions.

UNIT III 9Hrs

Hadoop: History of Hadoop- the Hadoop Distributed File System-Components of HadoopAnalysingtheDatawithHadoop-ScalingOut-HadoopStreaming-Designof HDFS-JavainterfacestoHDFSBasics-DevelopingaMapReduceApplication-HowMap Reduce Works-Anatomy of a Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort — Task execution - Map Reduce Types and Formats- Map Reduce Features-Hadoopenvironment.

UNIT IV 9Hrs

Frameworks: Applications on Big Data Using Pigand Hive—Data processing operators in Pig—Hiveservices—Hive QL—Querying Data in Hive-fundamentals of HB as eand Zoo Keeper-IBM Info Sphere Big Insights and Streams.

UNIT V

9Hrs

Predictive Analytics- Simple linear regression- Multiple linear regression- Interpretation of regression coefficients. Visualizations - Visual data analysis techniques- interaction techniques - Systems and applications.

Total Hours: 45

TEXT BOOKS:

- 1. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill Publishing,2012.
- 2. MichaelBerthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.

REFERENCES:

- 1. TomWhite"Hadoop:TheDefinitiveGuide"ThirdEdition,O'reillyMedia,2012.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP, 2012.
- 3. BillFranks, "TamingtheBigDataTidalWave:FindingOpportunitiesinHugeData Streams with Advanced Analytics", John Wiley& sons, 2012.
- 4. GlennJ.Myatt, "MakingSenseofData", JohnWiley&Sons, 2007.
- 5. Pete Warden, "Big Data Glossary", O'Reilly, 2011.
- 6. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", 2nd Edition, Elsevier, Reprinted2008.
- 7. DaRuan, Guoquing Chen, Etienne E. Kerre, Geert Wets, "Intelligent Data Mining", Springer, 2007.
- 8. Paul Zikopoulos, Dirkde Roos, Krishnan Parasuraman, Thomas Deutsch, James Giles, David Corrigan, "Harness the Power of Big Data The IBM Big Data Platform", Tata McGraw Hill Publications, 2012.
- 9. ArshdeepBahga, VijayMadisetti, "BigDataScience&Analytics: AHands- On Approach ", VPT, 2016
- 10. Bart Baesens "Analytics in a Big Data World: The Essential Guide to Data ScienceanditsApplications(WILEYBigDataSeries)",JohnWiley&Sons,2014

Subject Code	Subje	ct Nam	`		JAL					L	T /	P/	TD.	C
BCS18ET2/BCS20ET2	Subje			UTER	GRAP	HICS			Ty/ Lb/	L	S.Li		K	
			001,11	0 1 221	01111				ETL		B.L.	L		
	X Pr	erequis	ite: BE	S18ET	2.				ETL	1	0/1	3/	' 0	3
L : Lecture T : Tutorial						iect R	: Resea				0, 2		•	
Ty/Lb/ETL: Theory/Lab		•		_	•	,								
OBJECTIVES:														
The student should be	made t	0:												
 Understand t 	he outp	ut prin	nitives,	two dir	nensior	nal grap	hics an	d their	transfor	matio	ns.			
 Understand t 	he thre	e dimer	nsional	graphic	s and t	heir tra	nsform	ations.						
Understand i	llumina	ation an	d color	model	S									
Learn to crea	ate anin	nations												
COURSE OUTCOMES	S (COs):(3-:	5)											
CO1	Trans	form ge	ometri	cal stru	ctures,	perforn	n clippi	ng on g	eometr	ical of	ojects			
CO2	Analy	ze a 3E	struct	ure										
CO3	Crea	te and	evaluate	graph	ic proje	ects								
CO4		pply different shading, colour model and selection of colour												
CO5	Discu	Discuss animation sequences and graphics realism												
Mapping of Course Out	tcomes	with P	rogran	n Outc	omes (l	POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 l	PO11	PO	D12
CO1	2	1	1	1	1	1	1	3	1	1		1		2
CO2	3	2	1	1	2	1	1	3	2	1		1		3
CO3	3	2	2	1	2	1	1	3	2	2		1		3
CO4	3	2	2	1	2	1	1	3	2	1		1		3
CO5	3	3	3	2	2	2	2	3	2	2		2		3
COs / PSOs		PSO1			PSO ₂			PSO:	3			PSO4		
CO1		2			3			2				2		
CO2		3			3			2				2		
CO3		3			3			2				2		
CO4		3			3			2				2		
CO5		3			3			2				3		
3/2/1 indicates strength	of cori	elation	3-I	High, 2	– Med	ium, 1	- Low							
					SS		,							
	Ş		nd ses	4)	tive	S	jec	/ S0						
<u>></u>	nce	మ	s al	ore	Jec	tive	Prc	l igi d						
Category	cie	erin	itie Sci	n C	n E	lec	al /	Internships	ills					
ate	c S	nee	lani al	ran	ran	n E	Tice	Inte	\mathbf{Sk}					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	I	Soft Skills					
	В	ПŅ	ΞŠ	Ъ.	Ъ.	0	P.		Ś					

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18ET2/ BCS20ET2	COMPUTER GRAPHICS	ETL	1	0/1	3/0	3

UNIT I OUTPUT PRIMITIVES

9 Hrs

Output primitives-Line drawing algorithms-Loading the frame buffer-Line function-Circle generation algorithms –Ellipse generation algorithms- Attributes of output primitives-Numerical problem solving and programs on line, circle and ellipse drawing algorithms

UNIT II TWO DIMENSIONAL TRANSFORMATION & VIEWING

9 Hrs

Two dimensional transformations- Matrix representations and homogeneous coordinates - Composite transformations – two dimensional viewing -Window to view port transformation - Clipping operations - Point clipping - Line clipping (Cohen - Sutherland line Clipping) - Polygon clipping(Sutherland - Hodgeman algorithm) –Numerical problem solving and programming on two dimensional transformation ,viewing and clipping

UNIT III THREE DIMENSIONAL GRAPHICS

9 Hrs

Three dimensional concepts - Three dimensional object representation -Three Dimensional Transformations - Visible surface detection methods (Back Face Detection - Depth Buffer Method - Scan Line Method) - Numerical problem solving and programming on three dimensional transformations

UNIT IV POLYGONRENDERING METHODS AND COLOUR MODELS

9 Hrs

Constant-Intensity Shading - Gouraud Shading- Phong Shading- chromaticity diagram - RGB colour model - YIQ colour model - CMY colour model - Colour selection

UNIT V ANIMATION GRAPHICS

9 Hrs

Design of Animation sequences – animation function – raster animation – key frame systems – motion specification – morphing - create Interactive animation for gamming

Total Hours: 45

TEXT BOOKS:

- 1. Donald, D. Hearn. Pauline, Baker, M. Warren, Carithers. (2010) Computer graphics with Open GL, (4thed.)
- 2. Computer Graphics (Special Indian Edition) (Schaum's Outline Series) 2nd Edition, 2006 (English, Paperback, Xiang, Plastock, Avadhani), McGraw Hill Education (India) Private Limited

REFERENCE BOOKS:

- 1. John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven K. Feiner and Kurt Akeley ,"Computer Graphics: Principles and Practice", 3rd Edition, Addison-Wesley Professional, 2013.
- 2. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, Kelvin Sung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.

Ty/Lb _

Subject Code:

Subject Name:

BCS18L05/BCS20L05		NETV	VORK	PROG	RAMI	MING	LAB		/E7		L	T/S.L	Lr P/R	C
	Prerec	quisite:	:						L	b	0	0/0	3/0	1
L : Lecture T : Tutorial		_		earning	P : Pro	oject R	: Resea	arch C	: Cre	edits				
Ty/Lb/ETL: Theory/Lal		•		_		3								
OBJECTIVES:														
 Hands on Experi 	ience to	design	an app	olicatio	n using	TCP a	nd UDP	sock	ets.					
 Hands on Experi 	ience to	design	an inte	erface t	o transf	er a file	e betwe	en two	o end	ls usin	g F	ГР		
Hands on Experi	ience to	develo	p a RM	II appl	ication	for spec	cific op	eratio	n					
To have a know.	ledge to	work	with Ne	etwork	Simula	tors								
COURSE OUTCOME	S (COs	3):(3-	5)											
CO1	Abilit	y to app	oly the	knowle	dge in	Socket	Prograr	nming	g usin	ng TC	P an	id UD	P	
CO2	To de	sign Cl	ient /Se	rver Ap	plicati	on Prog	gram by	reme	mber	ring th	e sta	andaro	ds of pro	otocol.
CO3	Abilit	y to cre	ate a So	erver ba	ased ap	plicatio	n using	RMI	and l	RPC c	onc	epts.		
CO4						or work								
CO5	Can a	nalyze	the state	e of net	work.									
Mapping of Course Ou	tcomes	with I	rograi	m Outo	comes (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	3	PO9	PC	D10	PO11	PO12
CO1	3	3	2	2	2	3	1	3		3		3	3	2
CO2	3													
CO3	3													
CO4	3	3	2	3	1	3	1	3		2		3	3	2
CO5	3	2	2	2	1	3	3	3		3		3	3	3
COs / PSOs		PSO1			PSO2			PS	03				PSO4	
CO1		3			3			3	3				3	
CO2		3			2			3	3				3	
CO3		3			3			3	3				3	
CO4		3			2			2	2			,	2	
CO5		3			2			3	3				2	
3/2/1 indicates strength	of cor	relatio	$n \overline{3-1}$	High, 2	2 – Med	lium, 1	-Low	7						
								Skill	· <u> </u>		_			
						i				1				
		es	cial											
		saces	Social		es		ot .							
Ş.	Se	Sciences		a)	tives	sə	oject							
egory	suces	ng Sciences]ore	Hectives	tives	Project							
Category	ciences	ering Sciences	es and	n Core	n Electives	lectives	al / Project		ills					
Category	ic Sciences	ineering Sciences	es and	gram Core	gram Electives	n Electives	tical / Project		Skills					
Category	3asic Sciences	Engineering Sciences	es and	rogram Core	rogram Electives)pen Electives	ractical / Project		oft Skills					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical S	Soft Skills					
Category	Basic Sciences	Engineering Sciences	es and	Program Core	Program Electives	Open Electives	Practical / Project		Soft Skills					

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ET	L	T/ S.Lr	P/R	C
BCS18L05/	NETWORK PROGRAMMING LAB	Lb	0	0/0	3/0	1
BCS20L05						

LIST OF EXPERIMENTS

- 1. Networking Commands with options. (Case Study).
- 2. Socket program to extent communication between two deferent ends using TCP.
- 3. Socket program to extent communication between two deferent ends using UDP
- 4. Create a Socket (TCP) between two computers and enable file transfer between them.
- 5. Implementation of RPC in server-client model
- 6. Implementation of ARP/RARP.
- 7. HTTP Socket program to download a web page.
- 8. File transfer in Client-Server architecture using following methods
 - a) Using RS232C b) Using TCP/IP
- 9. To implement RMI (Remote Method Invocation)
- 10. Write a network program to broadcast/ multicast a message to a group in the same network.
- 11. Demonstration of Network Simulators.

Subject Code:	Subject Name:	Ty/	L	T/	P/R	C
BCS18L06/BCS20L06	OPERATING SYSTEMS LAB	Lb/		S.Lr		
		ETL				
	Prerequisite: NIL	Lb	0	0/0	3/0	1

 $L: Lecture \ T: Tutorial \quad S.Lr: Supervised \ Learning \quad P: Project \quad R: Research \ C: Credits \\ Ty/LbETL: Theory/Lab/Embedded \ Theory \ and \ Lab$

OBJECTIVES:

- To learn to Create processes and implement IPC
- To learn to use system calls through C programs
- To learn to use the file system related system calls
- To gain knowledge to Analyze the performance of the various Page Replacement Algorithms
- To learn to Implement File Organization and File Allocation Strategies

COURSE OUTCOME														
CO1	Maste	r functi	ons, str	uctures	and his	story of	operat	ing syst	ems					
CO2										systems				
CO3						nt conce	epts inc	luding s	cheduli	ng, sync	hronizati	ion,		
	deadlo	ocks and	d multit	hreadir	ng									
CO4	Maste	r conce	pts of r	nemory	manag	ement	includi	ng virtua	al memo	ory				
CO5	Maste	r issues	related	l to file	system	interfa	ce and	implem	entation	, disk ma	anageme	nt		
Mapping of Course Ou	tcomes	with P	Progran	n Outc	omes (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	2	1	1	1	2	2	1	1		
CO2	3	3	2	1	1	1	2	2	2	1	1	1		
CO3	3	3	2	2	2	2	2	2	1	1	1	2		
CO4	3	3	2	1	1	1	1	1	2	1	1	1		
CO5	3													
COs / PSOs		PSO1			PSO2			PSO3	}		PSO4			
CO1		3			2			2			1			
CO2		3			2			2			1			
CO3		3			2			2			2			
CO4		3			1			2			1			
CO5		3			1			2			1			
3/2/1 indicates strength	of cor	relation	1 3 - 1	High, 2	- Med	ium, 1	-Low	7						
					es		ct	_						
	Se		nd	a)	tiv	es	oje	/ Si						
5	nc	1g	ss a	Jor]]ec	tiv	Pr	Internships						
Category	cie	erii	itie Sc	n (n E	Jec	al /	Su.						
ate	c S	ine	nan al	rar	ŗraī	u E	tica	nte	X					
Ű	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	I	Soft Skills					
	В	ПÑ	ES	Ь	Ь	0	√		2					
							~							

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18L06/BCS20L06	OPERATING SYSTEMS LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Basic UNIX commands learning and usage.
- 2. Shell Programming.
- 3. File system related system calls. (Learn to create, open, read, write, seek into, close files & open, read, write, search, close directories).
- 4. Process management Fork, Exec (Learn to create a new process and to overlay an executable binary image on an existing process).
- 5. Inter-process communication between related processes using pipes.
- 6. Process synchronization using semaphores (Solutions to synchronization problems like producer consumer problem, dining philosopher's problem etc...).
- 7. Inter-process communication among unrelated processes using Shared memory.
- 8. Inter-process communication among unrelated processes using Message Queues.
- 9. CPU Scheduling algorithms.
- 10. Contiguous memory allocation strategies best fit, first fit and worst fit strategies.
- 11. Page replacement algorithms

Dr.M.G.R. Educational and Research Institute (DEEMED TO BE UNIVERSITY) (An ISO Certified Institution) University with Graded Autonomy Status Maduravoyal, Chennai - 600 095

BCS20AL03 Big Data Analytics Lab Lb/ S.Lr P/R C Prerequisite: BCS18003 Lb 0 0/0 3/0 1 L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab	Subject Code:	Subie	ect Nan	ne :						Ty/	/						
Prerequisite: BCS18003					ata Ar	alytics	Lab			-		L		P /	$\mathbf{R} \mid \mathbf{C}$		
Prerequisite: BCS18003				Ü		·						_	S.Lr				
Column C		Prerec	auisite:	BCS18	3003							0	0/0	3/	0 1		
## Title The students will be able to setup Hadoop environment. • The students will be able to implement hbase. COURSE OUTCOMES (COs): (3-5)	L : Lecture T : T					earning	2 P : P1	oject R	R : Rese			edits		1			
## The students will be able to setup Hadoop environment. • The students will be able to implement hbase. **COURSE OUTCOMES (COs): (3-5)** **CO1							2	3									
• The students will be able to implement hbase. COURSE OUTCOMES (COs): (3-5) CO1	OBJECTIVE :	•															
COURSE OUTCOMES (COs) : (3-5)	The stud	dents w	ill be al	ole to se	etup Ha	doop e	nvironr	nent.									
COURSE OUTCOMES (COs) : (3-5)					-	-											
Implement Hadoop and install Hadoop network. CO2																	
CO2						tall Hac	loop ne	twork.									
Mapping of Course Outcomes with Program Outcomes (POs)	CO2	Imple	ment fi	le mana	igemen	t.	•										
Mapping of Course Outcomes with Program Outcomes (POs)	CO3	Imple	ment m	aph rec	luce												
Mapping of Course Outcomes with Program Outcomes (POs)				1		ms											
Mapping of Course Outcomes with Program Outcomes (POs)																	
COS/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12			se Outcomes with Program Outcomes (POs) O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO														
CO1 3 2 3 2 2 2 2 2 2 3 2 3 3 CO2 3 2 3 2 2 2 2 2 2 3 3 3 CO3 3 3 3 3 2 3 3 3 3 2 2 2 2 2 3 3 3 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PO8</td> <td>I</td> <td>209</td> <td>PO1</td> <td>0 P(</td> <td>)11</td> <td>PO12</td>									PO8	I	209	PO1	0 P()11	PO12		
CO3 3 3 3 2 2 2 1 2 2 1 2 2 1 2 2 2 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 3 2 2 2		3	2														
CO4 3 3 3 3 2 2 2 2 2 3 3 CO5 3 3 2 3 2 1 2 2 1 2 2 CO5 / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 2 CO2 3 3 3 1 CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low	CO2													3			
CO5 3 3 3 2 3 2 1 2 2 1 2 2 COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 2 CO2 3 3 1 CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low	CO3													2	2		
COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 2 CO2 3 3 3 1 CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low 3 2	CO4	3	3	3	3	3	2	2	2		2	2		3	3		
CO1 3 3 2 CO2 3 3 1 CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low	CO5	3	3	3	2	3	2	1	2		2	1		2	2		
CO1 3 3 2 CO2 3 3 1 CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low																	
CO2 3 3 1 CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low	COs / PSOs		PSO1	•		PSO ₂	•		PS	03			P	SO4			
CO2 3 3 1 CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low																	
CO3 2 3 2 2 CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low	CO1		3			3			3					2			
CO4 3 2 3 2 CO5 3 2 3 2 3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low	CO2		3			3			3					1			
CO5 3 2 3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low Sylvery Sylver	CO3		2			3			2	,				2			
3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low	CO4		3			2			3					2			
3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low	CO5		3			2			3					2			
ices cocial cocial mical Skill		strengt	h of co	rrelatio	on 3 –	High,	2 – Me	dium,	1 – Lo	w		I					
Category Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Open Electives A Practical / Project Internships / Technical Sk Soft Skills						- 6 /		,									
Category Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Internships / Technical Soft Skills									Sk								
Category Basic Sciences Engineering Science Sciences Program Core Program Electives Open Electives A Practical / Project Internships / Techni Soft Skills			S	ial					cal								
Category Basic Sciences Engineering Scie Humanities and Sciences Program Core Program Elective Open Electives Internships / Tec			nce	Soc		Š			hni								
Categor Basic Science Engineering S Ciences Program Core Program Elect Open Elective Open Elective Soft Skills	>	S	cie	p		ive	S	jec	Se								
Cate Basic Scier Engineerin Humanities Sciences Sciences Program E Open Elect Open Elect Soft Skills	gor	ıce	ρυ S	s ar	ore	lect	ive	Pro	[/ J								
Basic Sa Basic Sa Humani Science Program Program A Practica Soft Ski	ate	cier	irin	ties	ιÇ	ıΕ	lect	17.	iips	11s							
Basic Hum Scier Program Aprogram Inter Soft:		SS	nee	ani	ran	ran	ΠŒ	ica	nsk	Ski							
		asic	ngi	um ier	80.	go.	per	act	ıter	oft							
		Ä	垣	H S	Pı	Pı	0	P ₁	Ir	Š							
								✓									

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ET	L	T/ S.Lr	P/R	C
BCS20AL1	Big Data Analytics Lab	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Downloading and installing Hadoop; Understanding different Hadoop modes. Start- up scripts, Configuration files
- 2. Hadoop Implementation of file management tasks, such as Adding files and directories, Retrieving files and Deleting files
- 3. Implement of Matrix Multiplication with Hadoop Map Reduce
- 4. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
- 5. Implementation of K-means clustering using Map Reduce
- 6. Installation of Hive along with practice examples.
- 7. Installation of HBase, Installing thrift along with Practice examples
- 8. Patrice importing and exporting data from various data bases .

				` `																
Subject BCS18T S20T	S2/B		bject N	TEC		AL SKI JATIO				Ty/ Lb/ ET L	L	T/ S.L r	P/R	C						
		Pr	erequisi	te:						Lb	0	0/0	3/0	1						
L : Lectu Ty/Lb/E		: Tuto	rial S.					roject I	R : Rese	arch C:	Credits									
•	To m To d To fa	ake the evelop cilitate	profess the stud	ts expert ionals with dents with COs): (3	th idea h emer	listic, pı	ractical	and mo		es.										
CO1				main spe		nowledg	re .													
CO2	Abl	e to ap	ply idea	listic, pra	actical a	and mor	al valu	es.												
CO3	Fan	niliariz	e with e	merging	technol	logy														
Mappin	g of (Course	Outco	mes with	Progr	am Ou	tcomes	(POs)												
COs/P	Os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) P(011	PO12						
CO	1	3	3	1	1	1	2	2	1	1	1		3	1						
CO	2	3	3	2	3	3	2	2	2	2	2		3	1						
CO	3	3	3	3	3	3	2	2	1	2	2		3	1						
COs /PS		PS	SO1		PSC				PSO3			I	PSO4							
CO			3		3				1				1							
CO			3		3				1				3							
CO.		g C4	3	Com1: 4	3		2 14]: 1	1				3							
3/2/11nd	ucate	s Strer	igun of	Correlat	10H 3	- High,	∠- 1V160	mum, 1	-LOW											
Category	,	Basic Sciences	Engineerin g Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	;	Internships / Technical	Skill		; ;	SOIT SKIIIS						
										/										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18TS2/BCS 20TS2	TECHNICAL SKILL II (EVALUATION)	Lb	0	0/0	3/0	1

OBJECTIVES:

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

Subject Code: BCS18009/BCS20009		t Name	: EIENTE	D SOF	TWAR	E ENG	INEER	ING	Tv /Lh	/ETL	L	T/S	.Lr	P/R	C	
Bes10007/Bes20007	ODGL			201	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L Livo		11.10	13,120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	175		- /		
	Prereg	uisite: I	3CS180	02					Т	y	3	1/	0	0/0	4	
L : Lecture T : Tutorial	S.Lr:	Superv	ised Lea	arning I	P : Proje	ct R: F	Research	1 C: C	redits				•			
Ty/Lb/ETL: Theory/La	b/Embe	edded T	heory ar	nd Lab												
OBJECTIVES:																
 Understand the 	phases	in a soft	ware de	velopm	ent											
 Understand fun 			•	•	_	•	-	nalysi	s Modell	ling.						
 Understand the 	differer	it appro	ach for (Object (Oriented	Design										
 Learn various t 	esting a	nd mair	ntenance	e measu	res											
COURSE OUTCOME																
CO1	Identif	fy the ke	ey activi	ties in n	nanagin	g a soft	ware De	velop	ment.							
CO2	Comp	are diffe	erent pro	ocess mo	odels.											
CO3	Conce	pts of re	equirem	ents eng	ineering	g and A	nalysis l	Model	ing.							
CO4		<u> </u>	atic prod		•											
CO5	Compa	are and	contrast	the var	ious test	ting and	mainte	nance								
Mapping of Course O	utcomes															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	PO8	PO9	P	O10	PO1	1 P	O12	
CO1	3	3	2	3	3	1	1		2	3		3	3		3	
CO2	3	3	3	3	3	2	2		2	3		3	3		3	
CO3	3	3	3	3	3	2	2		2	3		3	3		3	
CO4	3	3	3	3	3	2	2		2	3		3	3		3	
CO5	3	3	3	3	3	2	2		3	3		3	3		3	
COs / PSOs		PSO1			PSO2]	PSO3				PSC)4		
CO1		3			3				3				3			
CO2		3			3				3				3			
CO3		3			3				3				3			
CO4		3			3				3				3			
CO5		3			3				3				3			
3/2/1 indicates strengt	h of cor	relation	1 3 – H	ligh, 2 -	- Mediu	m, 1 –	Low									
								iil								
								Internships / Technical Skill								
		S	Social					cal								
		nce	Soc		S		بب	hni								
2	SQ.	cie	рц		tive	S	jec	Lec								
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	✓ Program Core	Program Electives	Open Electives	Practical / Project	3 / 2								
ate	cie	iri	itie	n C	υE	lect	1 / 1	lips	ills							
	Š	nee	lani Ice	ran	ran	ıΕ	tica	nsł	Ski							
	asi	ngi	Humanit Sciences	g01	g01	per	ract		Soft Skills							
	B	亞	H	, Pı	Pı	0	Pı	Ir	Š							
				✓												

SEMESTER - VI

SUBJECT CODE	SUBJECT NAME	Ty/ Lb / ET	L	T/ S.Lr	P/R	C
BCS18009/BCS 20009	OBJECT ORIENTED SOFTWARE ENGINEERING	Ту	3	1/0	0/0	4

UNIT I SOFTWARE DEVELOPMENT LIFE CYCLE

12 Hrs

Introduction -Software process models: The waterfall model, Incremental development, Reuse-oriented software engineering – OOSD Life cycle: Process activities Software specification – Software design and implementation – Software validation – Software evolution- Process iteration: Prototyping, Incremental delivery, Boehm's spiral model - Agile methodology - OMT – Booch Methodology – Jacobson methodology – patterns – unified approach

UNIT II OBJECT ORIENTED SOFTWARE REQUIREMENTS AND ANALYSIS

12 Hrs

Requirements engineering: Functional and non-functional requirements – The software requirements document – System Modeling: Context models – Interaction models - Structural models - Behavioral models - UML: Static and Dynamic Models—Introduction to UML -Use case Diagram – Class diagrams –Dynamic modeling-Packages and Model Organization-UML Extensibility - Use case model – Creation of Classes: Noun Phrase Approach – Identifying Object Relationships, Attributes and Methods

UNIT III OBJECT ORIENTED SOFTWARE DESIGN

15 Hrs

Architectural design: Architectural design decisions - Architectural views - Architectural patterns - Application architectures - Design and implementation: Object-oriented design using the UML - OO Design Axioms - Corollaries-Design Patterns-Designing Classes: Class Visibility - refining Attributes - Designing Methods - Access layer: Object Store and Persistence-OODBMS - Table Class mapping - Designing Access layer classes - View layer: Designing Interface Objects

UNIT IV TESTING 9 Hrs

Software testing: Development testing - Test-driven development - Release testing - User testing - Quality Assurance Test - Testing strategies - Impact of OO Testing - Test Cases - Test Plan - Continuous Testing - Myers's Debugging principles.

UNIT V SOFTWARE QUALITY & MANAGEMENT

12 Hrs

Project management: Risk management- Managing people – Teamwork - Project planning: Software pricing - Plan-driven development - Project scheduling - Agile planning - Estimation techniques Quality management: Software quality - Software standards - Reviews and inspections - Software measurement and metrics - Configuration management: Change management - Version management - System building - Release management

Total Hours: 60

TEXT BOOK:

1. Yogesh Singh, Ruchika Malhotra (2012), Object – Oriented Software Engineering PHI Learning Private Limited. **REFERENCE BOOKS:**

- 1. Ian Sommerville (2008) Software Engineering (9thed.) Pearson Education Asia
- 2. Ali Bahrami (2008) Object Oriented System Development McGraw Hill international
- 3. Roger S. Pressman (2010) Software Engineering: A Practitioner Approach (8thed.) McGraw hill Publications
- 4. Grady Booch (2009) Object oriented Analysis & design ,Pearson Education India

BIT18003/BIT20003		ct Nam	e				Ty/ Lb/	L	T/ S.Lr	P/R	С		
	•	WEB T	ECHN SE	OLOG ERVIC		3	ETL		S.LI				
	Prerec	uisite:	BIT18				Ty	3	0/0	0/0	3		
L : Lecture T : Tutoria			I	l .	ı								
Ty/Lb/ETL: Theory/L	.ab/Emb	edded '	Theory	and La	b	Ü							
OBJECTIVES:													
• The students v	vill have	knowl	edge ab	out the	HTMI	_5 and (CSS3						
• To learn the co			-										
 To study abou 					evelop l	basic le	vel app	lication	and adv	ance app	lication	on weł	
pages.					•		11			11			
 To study abou 	t the cor	cept of	Web s	ervices	•								
COURSE OUTCOM													
CO1	Able t	o desig	n the w	eb pag	e using	HTM	L5 and	CSS3					
CO2		Able to design the web page using HTML5 and CSS3 Learn the fundamentals of XML, JSP and implement in the web service											
CO3	Understand the concept of Web service including SOAP, UDDI and WSDL												
CO4		Apply the concept of the server side programming to develop the application on wel											
	11 0	pages.											
CO5	Acquaint the latest programming language for the concepts of web services												
Mapping of Course C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	2	3	1	3	3	3	3	2	
CO2	3	2	1	2	2	3	3	1	3	3	3	2	
CO3	3	2	1	3	3	3	2	2	3	3	3	2	
CO4	3	3	2	3	1	3	1	3	2	3	3	2	
CO5	3	2	2	2	1	3	3	3	3	3	3	3	
COs / PSOs		PSO1	I		PSO2	1		PSO3			PSO4	l	
CO1	+	3			3			3			3		
CO2	+	3			2			3		2			
CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	3 1 3 2												
CO4	3 3 3 2												
CO5	<u> </u>		n 3_	High.		dium.	1 – Lo						
CO5	th of co	i i ciati			1,110								
	th of co					1	1	_					
CO5	th of co.		ial					ical					
CO5	th of co		Social		×			chnical					
CO5			d Social		ives	8	ect	Technical I					
CO5 3/2/1 indicates streng			and Social	ore	ectives	lves	Project	s / Technical kill					
CO5 3/2/1 indicates streng			ies and Social	Core	Electives	ectives	/ Project	hips / Technical Skill	ls				
CO5 3/2/1 indicates streng			unities and Social ces	am Core	am Electives	Electives	cal / Project	rnships / Technical Skill	skills				
CO5			manities and Social iences	ogram Core	ogram Electives	en Electives	actical / Project	aternships / Technical Skill	ft Skills				
CO5 3/2/1 indicates streng	Basic Sciences oo ut	✓ Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BIT18003/BIT20003	WEB TECHNOLOGY AND WEB SERVICES	Ту	3	0/0	0/0	3

UNIT I HTML 5 & CSS 3

9 Hrs

HTML – forms – frames – tables – web page design – Dynamic HTML – introduction – cascading style sheets – object model and collections –event model – filters and transition – data binding – data control – ActiveX control – handling of multimedia data

UNIT II XML 9Hrs

Role of XML - XML and The Web - XML Language Basics - Revolutions of XML - Service Oriented Architecture (SOA). XML - Name Spaces - Structuring With Schemas and DTD - Presentation Techniques - Transformation - XML Infrastructure.

UNIT III SOAP 9 Hrs

Overview of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns and Faults - SOAP With Attachments. Introduction to SGML - COM – DCOM – CORBA.

UNIT IV SERVER SIDE PROGRAMMING

9 Hrs

Introduction to Servlets and Java Server Page (JSP), Servlets lifecycle, Servlet Classes and Sessions. JSP Application Design, JSP objects, sharing data between JSP pages, Sharing Session and Application Data, Database Programming using JDBC, development of java beans in JSP.

UNIT VWEB SERVICES 9 Hrs

Overview - Architecture - Technologies - UDDI - WSDL - ebXML - SOAP and Web Services in E-Com, Rest full in Web service.

Total Hours: 45

TEXT BOOKS:

- 1. Richard Clark, Oli Studholme, Christopher Murphy and Divya Manian,"Beginning HTML5 and CSS 3" @ Apress , 2012
- 2. Frank. P. Coyle, "XML, Web Services and The Data Revolution", Pearson Education, 2002.
- 3. Phil Hanna, "JSP: The Complete Reference", McGraw-Hill, 2001

REFERENCE BOOKS:

 Laura Lemay, Rafe Coburn, Jennifer Kyrnin, "Mastering HTML, CSS & JavaScript Web Publishing", Pearson Education.2015

Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004.

Subject Code BCS20A04	: St	ıbject Na	ame :	onguo	to Proc	occina	Ty/ Lb/	L	T /	P/R	C	
DC320A04		17	aturai L	anguaş	ge 1 100	essing		ETL		S.Lr	1/1	C
	Pı	erequisi	te: BCS1	8002				Ту	3	0/0	0/0	3
L : Lecture T	L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits											
	L: Theory/Lab/Embedded Theory and Lab											
OBJECTIV												
•			~ ~				_	•		several dire		
	Relational data models, deductive (Intelligent) database systems, distributed systems, web based											
	systems and object oriented systems etc.											
	E OUTCOMES (COs): (3-5)											
CO1		Provide the student with knowledge of various levels of analysis involved in NLP										LP
CO2 CO3		Understand the applications of NLP										
CO4		Gain knowledge in automated Natural Language Generation and Machine Translation										
CO5		Compare and contrast different types of advance database management systems.										•
CO5 Describe database Administration and its management. Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO10	PO11	PO12
CO3/1 O3		102	103	104	103	100	107	100	9	1010		1012
CO1	3	3	2	3	2	1	1	3	3	3	2	3
CO2	3	3	3	3	3	2	2	3	3	2	1	2
CO3	3	3	3	2	2	2	2	2	3	2	1	2
CO4	3	3	3	3	3	2	2	3	3	3	2	3
CO5	3	3	3	3	3	2	2	3	3	3	2	3
COs /	PS	SO1	PSC)2	PS	O3	PS	O4				
PSOs												
CO1							3					
CO2		3	2		2			2				
CO3		3	3		3			3				
CO4		3	3		2			3				
CO5		~										
3/2/1 indicat	es stre	ength of	correlat	ion 3	– Hign,	2 – NI	eaium,	1 – Lov	v 			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
				/								

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS20A04	Natural Language Processing	Ту	3	0/0	0/0	3

UNIT I- OVERVIEW AND MORPHOLOGY

9Hrs

Introduction – Models -and Algorithms - -Regular Expressions Basic Regular Expression Patterns – Finite State Automata, Morphology -Inflectional Morphology - Derivational Morphology - Finite-State Morphological Parsing --Porter Stemmer

UNIT II - WORD LEVEL AND SYNTACTIC ANALYSIS

9Hrs

N-grams Models of Syntax - Counting Words - Unsmoothed N- grams- Smoothing- Backoff DeletedInterpolation - Entropy - English Word Classes - Tagsets for English - Part of Speech Tagging-Rule Based Part of Speech Tagging - Stochastic Part of Speech Tagging - Transformation-Based Tagging -

UNIT III - CONTEXT FREE GRAMMARS

9Hrs

Context Free Grammars for English Syntax- Context- Free Rules and Trees - Sentence- Level Constructions- Agreement - Sub Categorization - Parsing - Top-down - Earley Parsing - feature Structures - Probabilistic Context- Free Grammars

UNIT IV -SEMANTIC ANALYSIS

9Hrs

Representing Meaning - Meaning Structure of Language - First Order Predicate Calculus - Representing Linguistically Relevant Concepts -Syntax- Driven Semantic Analysis - Semantic Attachments -Syntax- Driven Analyzer - Robust Analysis - Lexemes and Their Senses - Internal Struct ure - Word SenseDisambiguation -Information Retrieval

UNIT V -LANGUAGE GENERATION AND DISCOURSE ANALYSIS

9Hrs

Discourse -Reference Resolution - Text Coherence - Discourse Structure - Coherence - Dialog and Conversational Agents - Dialog Acts - Interpret ation -Conversational Agents - Language Ge n e r a t i o n - A r ch i t ec t u r e - Surface Realizations - Discourse Planning - Machine Translation -Transfer Metaphor-Interlingua - Statistical Approaches

TEXT BOOKS Total Hours: 45

- 1. Daniel Jurafsky and James H Martin, "Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Prentice Hall, 2nd Edition, 2008.
- 2. C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing", MIT Press. Cambridge, MA:,1999

REFERENCE BOOKS

 C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing", MIT Press. Cambridge, MA:,1999

Subject Code: BCS18ET3/BCS20ET3	Subject Name: PHP/MYSQL	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
	Prerequisite: BCS18L03	ETL	1	0/1	3/0	3
T T . T . T		11.				

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- The students will learn the technology about scripting languages basics.
- To learn install PHP and work on that.
- To learn the basic and advance concepts of PHP language.
- To understand install the MySQL and work with MySQL database in admin level and client to store and retrieve the data in application with PHP.
- To learn design basic and advance applications using PHP and MySQL.

10 learn design ou	ore arra t	aca i carro c	appine	utions t	*****	uii uiiu	111 J ~ ~ 1									
COURSE OUTCOMES ((COs): (3-5) Learn the fundamentals of HTML, CSS and PHP															
CO1			dament	als of H	ITML,	CSS an	d PHP									
CO2	Learn	the fund	dament	als data	base co	oncept a	and MyS	QL								
CO3	Able t	o devel	op the A	Applica	tion usi	ing PHI	P and M	ySQL								
CO4	Apply	system	atic pro	cedure	for dev	eloping	g differe	nt dat	abases.							
CO5	Build	to deve	lop an a	pplicat	ion usi	ng PHP										
Mapping of Course Outco	omes w	th Pro	gram C	utcom	es (PO	s)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	3	1	2	2	3		2	3	3	3	3			
CO2	3	3	3	1	3	3	2		3	3	3	2	3			
CO3	3	3	3	1	3	2	1		3	3	3	3	3			
CO4	3	3	3	2	3	2	3		3	3	3	3	3			
CO5	3	3	3	3	3	2	2		1	3	2	3	3			
COs / PSOs	PSO1 PSO2 PSO3 PSO4															
CO1		3			2				3			3				
CO2		3			2				3			3				
CO3		3			2				3		3					
CO4		3			2				3			3				
CO5		3			2				3			3				
3/2/1 indicates strength of	f correla	ation 3	3 – Hig	h, 2 – I	Mediun	n, 1 – 1	Low									
ory	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills							
Category				√												

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18ET3/BCS	PHP / MYSQL	ETL	1	0/1	3/0	3
20ET3			1	0/1	3/0	3

UNIT I Introduction 9 Hrs

Introduction to Web server and Web browser - Introduction to PHP - Lexical structure - Language basics - Function and String - Default parameters - Variable function, Anonymous function Printing functions - Manipulating and searching strings - Regular expressions.

UNIT II Arrays 9 Hrs

Identifying elements of an array - Indexed Vs Associative arrays - Storing data in arrays - Multidimensional arrays - Extracting multiple values - Converting between arrays and variables - Traversing arrays - Sorting - Action on entire arrays - Using arrays.

UNIT III Objects and Web Techniques

9 Hrs

OOP – Class – Objects – Introspection – Serialization – Inheritance - Interfaces - Encapsulation HTTP Basics – Variables – Server information – Processing Form, Setting Response headers – maintain state – SSL.

UNIT IV Databases and Graphics

9 Hrs

Using PHP to access Database – Relational Databases and SQL – MySQLi Object interface – SQLite- Direct file level manipulation – mongoDB.Embedding an image in a page – Basic Graphic concepts – Creating and drawing images.

UNIT V Files and Directories

9 Hrs

Filter input – cross-site scripting – Escape output – Session fixation – file uploads – file access – PHP code – Shell commands – Core libraries – Templating systems – Handling output – Error Handling – Performance Tuning.

Total Hours: 45

TEXT BOOKS:

- 1. www.spoken-tutorials.org
- 2. Kevin Tatroe, Peter MacIntyre, etal "Programming PHP" O REILLY 3rd Edition 2013
- 3. Luke Welling, Laura Thomson "PHP and MySQL Web Development" Person Education 5th Edition 2016.
- 4. REFERENCE BOOKS:
- 1. Robin Nixon "Learning PHP, MySQL & JavaScript" O REILLY 5th Edition 2015.
- Elizabeth Naramore, Jason Gerner, etal "Beginning PHP5, Apache, MySQL web development" Wrox Publishing 2005.

Subject Code:	Subject Name:	Ty/	L	T /	P/R	С
BCS18L08/BCS20L08	OBJECT ORIENTED SOFTWARE ENGINEERING LAB	Lb/ ETL		S.Lr		
	Prerequisite: BCS18L02	Lb	0	0/0	3/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- Identify Use Cases and develop the Use Case model.
- Identify the business activities and develop an UML Activity diagram.
- Identity the conceptual classes and develop a domain model with UML Class diagram.
- Using the identified scenarios find the interaction between objects and represent them using UML Interaction diagrams.
- Draw the State Chart diagram.
- Identify the User Interface, Domain objects, and Technical services. Draw the partial layered, logical architecture diagram with UML package diagram notation.
- Implement the Technical services layer.
- Implement the Domain objects layer.

COURSE OUTCOMES (CO	(3)	- 5)													
CO1	Show	the imp	ortance	of syste	ems ana	alysis a	nd desig	gn in solv	ing con	nplex pro	oblems.				
CO2	Show	how the	e object	-oriente	ed appr	oach di	ffers fro	om the tra	aditiona	l approa	ch to syste	ms			
		sis and d													
CO3											ns, interact				
	_			_	ns, activ	vity dia	grams, a	and imple	ementat	ion diagr	ams) using	g the			
		priate no													
CO4								elationshi	ips: inhe	eritance,	associatio	n,			
		-part, an													
CO5						UML n	nodel in	develop	ing obje	ct-orient	ed softwar	re.			
COs/POs										.		PO12			
CO1	3	3	3	3	3	1	1	3	3	3	2	3			
CO2	3	3	3	3	3	1	1	3	3	2	1	3			
CO3	3	3	3	3	3	1	1	3	3	2	1	3			
CO4	3	3	3	3	3	1	1	3	3	3	2	3			
CO5	3	3	3	3	3	1	1	3	3	3	2	3			
COs / PSOs	PS	SO1	PS	O2		O3	PS	SO4							
CO1		3		3		3	3								
CO2		3		3		3		3							
CO3		3		3		3		3							
CO4		3		3		3		3							
CO5		3		3	_	2		3							
3/2/1 indicates strength of co	rrelati	on 3 – 1	High, 2	– Med	lium, 1	l – Lov	V								
	Ş	ä	; I	g	u Se	S	77 77	.E							
Category	Basic Sciences	Engineer ing	Humaniti es and	Program Core	Program Electives	Open Electives	Practical / Project	Internshi	S						
le ga	Basic Scienc	Engi ing	Humar es and	Progr Core	rog Jec	pe]	rac	nte. 	Skills						
Ca	S B	田油	E E	Ь	P	O H	P /		∞						
							✓								

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18L08/B CS20L08	OBJECT ORIENTED SOFTWARE ENGINEERING LAB	Lb	0	0/0	3/0	1

EXERCISES

- 1. Study of case tools such as rational rose or equivalent tools
- 2. Railway reservation system
- 3. Student Mark Analysis system
- 4. Payroll processing application
- 5. Inventory system
- 6. Automating the Banking process
- 7. Course Registration System
- 8. Library management system
- 9. Passport Automation System

SOFTWARE REQUIRED:

Languages: C/C++/JDK 1.3, JSDK, WEB BROWSER & UML

Any Front End Tools (Like VB, VC++, Developer 2000)

Any Back End Tools (Like Oracle, MS-Access, SQL, DB2)

Modelling and Design: Rational Rose

Subject	Subje	ct Nam	e							Ty/	L	T /	P/R	С
Code: BCS20AL04		Natı	ıral La	nguage	e Proce	ssing I	Lab			Lb/ ETL		S.Lr		
	Prerec	quisite:l	BIT18II	L01						Lb	0	0/0	3/0	1
L: Lecture T:							Project	R : R	lesea	ırch C: Cı	redits			
Ty/Lb/ETL:			nbedded	l Theor	y and I	Lab								
	CTIV													
			velop a											
		_	to desig		_	_								
		_	to desig	•			_	XML a	and 2	XSLT.				
			to des	_	il comn	nunicat	ion.							
COURSE OU														
CO1	,		n text v											
CO2			innova											
CO3									<u> </u>	ntax of a				
CO4	To de	sign a t	ag set to	be use	ed for s	tatistica	al proce	ssing	for r	eal-time	applica	tions		
CO5			and con	trast th	e use o	f differe	ent stati	stical	appr	oaches fo	or diffe	ent types	of NLP	
		ations.												
Mapping of C	Course	Outcor	nes wit	h Prog			es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PC)10	PO11	PO12
CO1	3	3	3	2	2	3	3	2		3		2	3	3
CO2	3	3	3	2	3	3	2	2		3		3	2	2
CO3	3	3	3	3	3	3	3	3		3		3	3	3
CO4	2	3	3	2	2	3	3	3		3		3	3	2
CO5	3	3	3	3	3	3	3	3		3		3	3	3
COs / PSOs		PSO1			PSO ₂			P	SO3	3]	PSO4	
CO1		3			3				3				2	
CO2		3			3				2				2	
CO3		2			3				3				3	
CO4		2			1				2				3	
CO5		3			3				3				3	
3/2/1 indicate	s stren	gth of c	correlat	tion 3	– High	1, 2 – N	<u> Iedium</u>		Low	7			Т	T
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
							✓							

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS20AL2	Natural Language Processing Lab	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Word Analysis
- 2. Word Generation
- 3. Morphology
- 4. N-Grams
- 5. N-Grams Smoothing
- 6. POS Tagging: Hidden Markov Model
- 7. POS Tagging: Viterbi Decoding
- 8. Building POS Tagger
- 9. Chunking
- 10. Building Chunker

Subject Code: BEN18SK2 /BEN20SK2	Subjec	t Name :		T SK	ILL –	II				Ty/ Lb/ ETL	L		T/ S.Lr	P/R	С
	Prerequ	uisite: BE	N185	SK1						ETL	0		0/0	3/0	1
L : Lecture T : Tut T/L/ETL : Theory/						? : Pr	oject	R : Re	esea	rch C: (Credits				•
OBJECTIVE:		•	.1	.1			1.1			. ,	.11 6.1	. 1			
• The main COURSE OUTCO				en the	logical	and	arithn	netic re	eas	oning si	alls of th	ne studer	its.		
CO1		nize and a		arithm	etic kr	nowle	edge i	n a vai	riet	v of con	texts.				
CO2		to identif										defend t	hem fron	n critici:	
CO3		data and	•				•	•		- 41-84111					
Mapping of Cour								_							
COs/POs	PO1	PO2	PO		PO4		O5	PO	6	PO7	PO8	PO 9	PO10	PO11	PO12
CO1	3	3	3	3	}	3		3		1	1	3	2	3	3
CO2	2	2	2	3	}	1		3		1	3	3	3	3	1
CO3	3	3	3	3	}	3		3		2	2	3	3	3	3
COs / PSOs		PSO1		P	SO2		PSC)3]	PSO4		1	1	1	
CO1	3			2		1			3						
CO2	2			1		3			3						
CO2	2			1		3			3						
3/2/1 indicates str	ength of	correlati	on 3	3 – Hi	gh, 2 –	Med	lium,	1 – L	ω	7					
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	2001	ò	Program Electives	Open Electives		Practical / Project	Internships / Technical Skill	Soft Skills			
												,	/		

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BEN18SK2 /BEN20SK2	SOFT SKILL - II	ETL	0	0/0	3/0	1

UNIT I Logical Reasoning I

Logical Statements – Arguments – Assumptions – Courses of Action.

UNIT II Logical Reasoning II

Logical conclusions - Deriving conclusions from passages - Theme detection.

UNIT III Arithmetical Reasoning I

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

UNIT IV Arithmetical Reasoning II

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

UNIT V Data Interpretation

Tabulation – Bar graphs – Pie graphs – Line graphs.

REFERENCE BOOK:

- 1. R.S. Agarwal, A modern approach to Logical Reasoning, S. Chand & Co., (2017).
- 2. R.S. Agarwal, A modern approach to Verbal and Non verbal Reasoning, S. Chand & Co., (2017).
- 3. R.S. Agarwal, Quantitative Aptitude for Competitive Examinations, S. Chand & Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

BCS18L09/	Subject INPLA PROJI	y/ b/ FL	L	S.I	Ĺr	P/R	C								
L : Lecture T	Prerequ : Tutori			ervised	Learnir	ng P:F	roiect 1	R : Res		ab ch C: 0	0 Credit	<u>0/</u> s	0	3/0	1
			•			-6 - 1-	10,000		, , , , , ,		010010				
T/L/ETL : The OBJECTIVE						raining	is to pro	ovide a	sho	ort-teri	m wor	k ex	xperie	nce ii	n an
Industry/ Com					r	8	P-						-F		
COURSE OU															
CO1							n/comp					loma	ain of	study	y .
CO2	•						h transi								
CO3							the pro					_			
CO4	To equ technol	•	studen	ts with	indus	try kno	wledge	and	unde	erstand	ding	of v	variou	s po	ssible
CO5			knowled	dge of v	arions 1	technol	ogies fo	rm the	indi	netry r	esour	ces			
Mapping of (1111 1110	mut	изи у 1	Cooul	ccs			
		PO2	PO3	PO4	PO5	PO6	PO7	PO8]	PO9	PO1	0	PO11	PC)12
CO1	2	2	3	3 2 3 3 3 3									3		3
CO2	3	2	3	3	2	3	3	3		3	3		3		2
CO3	3	3	3	3	2	3	3	3		3	3		3		2
CO4	2	1	3	1	3	3	2	2		2	2		2		2
CO5	1	2	3	2	3	2	3	2		2	2		1		2
COs / PSOs		PSO1			PSO ₂			PS()3				PSC	4	
CO1		2			3			3					3		
CO2		3			2			3					3		
CO3		3			3			3					3		
CO4		2			3			2					3		
CO5		3			2			3					2		
3/2/1 indicate	s stren	gth of c	orrelat	ion 3	– High,	$\frac{2-M_0}{2}$	edium,		OW					-	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18L09/ BCS20L09	INPLANT TRAINING / INTERNSHIP / MINI PROJECT (EVALUATION)	Lb	0	0/0	3/0	1

OBJECTIVE:

• The main objective of the In-plant training is to provide a short-term work experience in an Industry/ Company/ Organization

Subject Code: BCS1 BCS2	8TS3/		bject N TECH	ame : INICAL	SKILI	L III (E	VALU	ATION	J)	Ty/ Lb/ ET L	L	S.:		P/R	C
			erequisi							Lb	0	0/	0	3/0	1
				Lr : Supe			_	roject	R : Rese	earch (C: Cred	its			
OBJEC	CTIVI	ES:													
•	To m	ake the	studen	ts expert	in dom	ain spe	cific kn	owledg	je.						
•	To d	evelop	profess	ionals w	ith idea	listic, p	ractical	and mo	oral valu	ies.					
•				dents wit		ging tec	chnolog	у							
			`	COs) : (?											
CO1	Und	erstand	d the do	main spe	cific kr	nowledg	ge.								
CO2	Able	e to ap	ply idea	listic, pra	actical a	and mor	al valu	es.							
CO3	Fam	iliarize	e with e	merging	technol	ogv									
				mes with			ıtcomes	(POs)							
COs/P(PO	PO2	PO3	PO4	PO5	PO6	PO7		PO8 PO9 PO1		10	10 PO11		PO12
COS/I	<i>)</i> 5	1	102	103	104	103	100	107	10)		710	101	-	1012	
CO1		3	3	1	1	1	2	2	1	1	1	1	3		1
CO2		3	3	2	3	3	2	2	2	2	2	2	3		1
CO3		3	3	3	3	3	2	2 1		1 2		2	3		1
COs /P	SOs	PS	SO1		PSO	D2	1		PSO3	l .			PS()4	
CO1			3		3				1				1		
CO2			3		3				1				3		
CO3			3		3			1					3		
3/2/1ino	dicate	s Strei	ngth of	Correlat	tion 3	8- High	, 2- Me	ledium, 1-Low							
				r S				ect							
Catagory	ance or y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project Internships / Technical Skill			recnincal okli			Soft Skills	
	'			, , 01				J LA							

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ET	L	T/ S.Lr	P/R	C
BCS18TS3/ BCS20TS3	TECHNICAL SKILL III (EVALUATION)	Lb	0	0/0	3/0	1

OBJECTIVES:

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

SEMESTER - VII

Subject Code:		oject Name: ATA WAREHOUSING AND DATA MINING							[y/		T /		
BCS18010/BCS20010	DAT	TA WAREHOUSING AND DATA MINING								L	S.Lr	P/R	C
									TL				
		quisite:							Гу	3	00	0/3	4
L : Lecture T : Tutorial					g P:Pro	oject R	R : Rese	arch C: C	redits				
T/L/ETL: Theory/Lab/	Embedo	ded The	eory and	d Lab									
OBJECTIVE:													
 Provide an over 				-				-					
 Gain insight int 								hniques a	nd data	a ware	housing	5	
Applying data m				commo	on data	mining	tools						
COURSE OUTCOME													
CO1								using and					
CO2			he diffe	erent ste	eps follo	owed in	n Data r	nining an	d pre-p	rocess	sing tec	hniques	š
000	using						1.67						
CO3								ering app					
CO4								nd related			•.•		
CO5	_			pproac	hes of d	ata wai	re housi	ng and da	ata min	ing w	ith vari	ous	
	techno	echnologies.											
Mapping of Course O	utcome	comes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3					PO8	PO9	PO1	0 PO	11 P	O12
CO1	3	3	3	PO4 PO5 PO6 PO7 PO8 3 3 3 1 3			3	2	3	3		3	
CO2	3	3	3	2	3	3	2	3	1	3	3		2
CO3	3	3	3	2	3	3	2	3	1	3	3		2
CO4	3	3	3	1	3	3	2	3	1	3	3		2
CO5	3	3	3	3	3	3	2	2	1	3	3		3
COs / PSOs		PSO1			PSO2			PSO3			PS	O4	
CO1		3			2			3				3	
CO2		3			2			3				3	
CO3		3			2			3				3	
CO4		3			1			3				3	
CO5		3			2			3				3	
3/2/1 indicates strengt	h of cor	relatio	n 3 –	- High, 2 - Medium, 1 - Low			V						
	es		pu				, I						
_	nce	1g	ss a	rogram Core rogram rogram lectives pen Elective ractical / ractical / roject			sd i						
Category	cie	erii	itie	m C m C m C m C m C m m m m m m m m m m			lsh:						
teg	S	ine nce	nan al	gram gram trive trica ect			Ferr Sk						
Ca.	asi	ngi	[un oci	Social Program Core Program Electives Open Electives Practical / Project Internships /		Internshi T							
	B	ПÑ	ΞŠ	Humanities and Social Program Electives Open Electives Project Internships /			S						
			✓										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С	
BCS18010/BC	DATA WAREHOUSING AND DATA MINING	Ty	3	0/0	0/3	4	1
S20010		,					

UNIT I DATA WAREHOUSING

12 Hrs

Introduction to Data Warehousing- Advantages- What makes Data Warehousing a reality- Data warehousing Components-Building a Data Warehouse-mapping Data Warehouse to a Multiprocessor-Architecture-DBMS Schemas for Design Support

UNIT II ETL AND BUSINESS TOOLS

12 Hrs

Data Extraction-Cleaning and Transformation tools- Meta data. Reporting and Query tools and Application-OLAP Patterns and Models- Statistics

UNIT III DATA MINING

12 Hrs

Introduction – Data – Types of Data – Data Mining Functionalities – Interestingness of Patterns – Classification of Data Mining Systems – Data Mining Task Primitives – Integration of a Data Mining System with a Data Warehouse – Issues – Data Preprocessing. – Data Cleaning –Missing Values-Noisy Data-Inconsistent Data-Data Integration and Transformation-Data Reduction – Dimensionality Reduction – Evaluation criteria of Various Mining Techniques

UNIT IV ASSOCIATION RULE MINING AND CLASSIFICATION

12 Hrs

Mining Frequent Patterns, Associations and Correlations – Mining Methods – Mining Various Kinds of Association Rules – Constraint Based Association Mining – Classification and Prediction - Decision Tree Induction - Entropy and Classification Algorithms -Bayesian Classification – Rule Based Classification

UNIT V CLUSTERING TECHNIQUES

12 Hrs

Total Hours: 60

Cluster Analysis - Types of Data - Categorization of Major Clustering Methods - Kmeans - Partitioning Methods - Hierarchical Methods - Density-Based Methods - Grid Based Methods - Model-Based Clustering Methods - Clustering High Dimensional Data - Constraint - Based Cluster Analysis - Outlier Analysis - Genetic Algorithm For Mining - Data Mining Applications

TEXT BOOKS:

- 1. Alex Berson and Stephen J.Smith, "Data Warehousing, Data Mining and OLAP", Tata McGraw Hill Edition, Thirteenth Reprint 2008.
- 2. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Third Edition, Elsevier, 2012.

REFERENCE BOOKS:

- 1. Arun K Pujari (2017) Data Mining Techniques 4th edition, Universities Press (India) Ltd.
- 2. Sam Anahory, Dennis Murry (2004) Data Warehousing in the real world, Pearson Education
- 3. Margaret H. Dunham (2006) Data Mining: Introductory and Advanced Topics, Pearson

Subject Code: BCS18011/BCS20011	Ü		Name: DOT NET FRAMEWORK Ite: BIT18I02 Pervised Learning P: Project R: Research C:						Ty/ Lb/ ETL Ty	1 L	S.l	Lr	P/R D/0	C 4
L : Lecture T : Tutorial					D · Droi	oct P ·	Pasaar	ch C: Cr		3	1/	U	// U	4
T/L/ETL: Theory/Lab/E					i .110j	cci K.	Resear	cii C. Ci	cuits					
OBJECTIVE:	mocaa	ea The	ny una	Luo										
• To learn the con-	cents of	C# Do	t Net la	nguage	and abi	ility to y	write pr	ograms.						
To understand the second control of the	_					-	_	-	develo	on a	ın appli	cation.		
To develop know						_	_			- F	F F			
COURSE OUTCOMES				<u>r</u>	1									
CO1			•	ent and	creating	Applic	cations	with C#.						
CO2								c .NET						
CO3	Create	e web fo	orms wi	th ASP	NET co	ontrols								
CO4							in any	languag	e in VE	B.NE	ET fran	ne work	-	
CO5														
Mapping of Course Ou				the problem solving techniques on remoutcomes (POs)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS)]	PO10	PO11	P	012
CO1	2	2	2	2 2 1 2 1					3		3	1		3
CO2	3	2	3	3	3	2	2	2	3		3	2		3
CO3	3	3	3	3 3 2 2 3				2	3		3	3		3
CO4	3	3	3	3	3	2	2	2	3		3	3		3
CO5	3	3	3	3	3	2	3	2	3		3	3		3
COs / PSOs		PSO1			PSO2			PSO:	3	PSO4			1	
CO1		3			2			2				2		
CO2		3			3			2				3		
CO3		3			3			2				3		
CO4		3			3			2				3		
CO5		3			3			2				3		
3/2/1 indicates strength	of cor	relation	3 – H	ligh, 2	– Medi	um, 1-	- Low							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	SOIT SKIIIS					
				7 7 7 8 9 9 9 9 9 9 9 9 9 9										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18011/ BCS20011	DOT NET FRAMEWORK	Ту	3	1/0	0/0	4

UNIT I DOT NET FRAMEWORK

12 Hrs

.NET platform, .NET Frame work, Common Language Runtime, Namespace, assemblies, .NET memory management Introduction to C#.net, Introduction to VB.NET

UNIT II C#.NET 12 Hrs

Introduction to C#, Understanding C# in .NET, Overview of C#, literals, Variables, Data Types. Operators, Expressions, Branching and Looping Operations- Methods, Arrays Strings. Structures and Enumerations – Classes and Objects-inheritance and Polymorphism, Multiple Inheritance, Operator Overloading, Events, Console I/O Operations and Exception

UNIT III VB.NET 12 Hrs

Introduction, Windows application, Web application, Building Blocks, programming Fundamentals, Creation of Windows Forms, SDI Vs MDI, Crating run time Windows Controls. File handling, Interaction with other Applications, Creating and using reports, Debugging and Packaging

UNIT IV ADO.NET 12 Hrs

ADO.NET, Connected Objects, Disconnected Objects, Data Form Wizard, Data Bound Form, Various Connection Methodologies for Database, Querying database, usage of Data Adapter class. Working with data off-line, Data view object, strongly typed Dataset Objects. Working with XML data, Building Windows based and web based application, .Net data providers

UNIT V ASP.NET& WEB SERVICES

12Hrs

Creation of web services, web service with ASP.NET, ASP.NET applications with databases, cookies and session handling

Total Hours: 60

TEXT BOOKS:

- 1. ThuanL.Thai, Hoang Lam, (2003).NET Framework Essentials, (3rded.) O'reilly Media Inc.
- 2. Balagurusamy, E. (2010) Programming in C#(3rd ed.) Tata McGraw-Hill

REFERENCE BOOKS:

- 1. Kogent Solutions Inc (2009) C# 2008 Programming: Covers .Net 3.5 Black Book, (Platinum ed.) Dreamtech Press
- 2. Kip R Irvine Tony Gaddis (2009) Starting Out with Visual Basic 2008 (4thed.) Addison Wesleypublication
- 3. Evjen, Hanselman, Rader (2005) Profesional ASP.NET 2.0, John Wiley & Sons
- 4. David Sceppa (2013) Programming Microsoft ADO.NET4, Amazon.com
- 5. web reference http://msdn.microsoft.com/en-us/vstudio/default.aspx

Subject Code: BMG18002/	•	t Name : IAGEMI	ENT CO	NCEPTS BEHAV		RGANI	ZATION	IAL	Ty/ Lb/ ETL	I	L T		P/R	С
BMG20002		isite: BE Inowledg		Statistica	al Techni	ques and	Probabil	ity	Ту	3	3 0/	'0	0/0	3
L : Lecture T : Tutor		Project (C: Credits	}										
OBJECTIVE:														
This course is functions.	s aimed a	at addres	sing the o	contempo	orary issu	es, which	n fall und	ler the l	oroad ti	tle o	f mana	gemen	t, and	l its
There will also	so be an	attempt to	o analyze	the beha	vior of in	ndividual	s within a	an orgai	nization	and	the issu	ies of w	orkir	19
with other gr								3-8						-6
COURSE OUTCO														
CO1		ve leaders												
CO2				workers a	and at Wo	ork envir	onment							
CO3		ed leader												
CO4				menting g				e of ma	nageme	ent a	nd work	ters		
CO5				ndividual			zation							
Mapping of Course							1 _		1			1		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			PO10	PO11	_)12
CO1	2	1	2	1	2	2	3	3		3	3	3		3
CO2	1	3	3	3	1	2	3	3		3	3	3		3
CO3	1	2	3	3	2	2	3	2		3	3	3	_	3
CO4	2	3	3	3	1	2	3	3		3	3	3		2
CO5	1	2	3	3	3	3	3	3		2	3	3		2
COs / PSOs		PSO1			PSO2			PSO	3			PSO	4	
CO1		2			2			1				2		
CO2		2			2			1				1		
CO3		2			1			2				2		
CO4		1			2			2				1		
CO5		1			2			2				2		
3/2/1 indicates stre	ngth of c	orrelatio	n 3 - H	ligh, 2 – I	Medium,	1 – Lov	V			-		T		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Monogonat Coices	Management acience			

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BMG18002/ BMG20002	MANAGEMENT CONCEPTS AND ORGANIZATIONAL BEHAVIOR	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO MANAGEMENT

9 Hrs

Definition of Management – Science or Art or Profession – Manager v_s Entrepreneur vs Leader – Types of Managers – Managerial roles and skills – Evolution of Management – Scientific, Human relations and system approaches

UNIT II PLANNING AND ORGANIZING

9 Hrs

Nature and purpose of planning – planning process – types of planning – planning premises – Nature and purpose of organizing – Formal and Informal organization – organization chart – organization structure – types - Line and staff authority

UNIT III DIRECTING AND CONTROLLING

9 Hrs

Leadership – Types and theories of leadership – communication – process of communication – barriers in communication – System and process of controlling – Budgetary and non budgetary control techniques – Direct and preventive control – reporting

UNIT IV INDIVIDUAL BEHAVIOR

9 Hrs

Diversity - Attitudes and Job satisfaction - Emotions and Moods - personality and values - perception - Decision making - Motivation concepts - Motivation Applications

UNIT V GROUP BEHAVIOR

9 Hrs

Foundations of Group Behavior - Understanding Teams - power and politics - Conflict and Negotiation - Stress Management

Total Hours: 45

TEXT BOOKS:

- 1. Harold Koontz and Heinz Weihrich "Essentials of Management" Tata McGraw Hill Education 2015
- 2. Stephen. P. Robbins, Timothy A. Judge and Seema Sanghi "Essentials of Organizational Behavior" Pearson 10th Edition 2010

REFERENCE BOOKS:

- 1. Tripathi PC & Reddy PN "Priciples of Management" Tata McGraw Hill 2012
- 2. Stephen P. Robbins, David A.De.Cenzo, Mary Coulter "Fundamentals of Management" Pearson Education 2016

	COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE) Subject Code: Subject Name: Ty/													
Subject BCS20A				Data Vi	sualiza	tion Te	chniqu	es		Ty/ Lb/ ETL	L	T/ S.Lr	P/I	
		Pre	erequisi	te: NIL						Ту	3	0/0	0/3	3 4
	ETL:	Theory		Lr : Supe mbedded				roject I	R : Rese	arch C:	Credits	8		
•	Be ended under Be ended	xposed rstand rstand xposed	posed with the basic rudiments of business intelligence system stand the modeling aspects behind Business Intelligence stand of the business intelligence life cycle and the techniques used in it posed with different data analysis tools and techniques TCOMES (COs): (3-5)											
CO1				ent types		ysis								
CO2				ind busii		•	e							
CO3				cle metho		_		elligen	ce					
CO4	Abl	e to wo	rk with	differen	t tools a	and tech	niques							
CO5	wor	ld prob	lems							ichine 1	learning	techn	iques	s to real-
-				mes witl							1 = = .			
COs/PC										PO12				
CO1		3	3	3	3	2	3	2	2	3	3		3	3
CO2		3	3	3	3	2	3	2	2	3	3 2		3	3
CO4		3	3	3	3	2	3	2 2	2	3	3		3	3
CO4		3	3	3	3	2	3	2	2	3	$\frac{3}{2}$		3	3
COs/		PS		PSO			03		604	3	<u> </u>		3	3
PSOs		10					33							
CO1		3	3	3		2	2		2					
CO2		3	3	3		- 3	3		3					

3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low

CO₃

CO4

CO₅

Category Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Internships / Tachnical Skills Soft Skills	Z/I maica	ingthi or	corretat	1011	1115119		carain		0 11		
	Category	Engineering Sciences	Humanities and Social Sciences	♦ Program Core	Electi	Open Electives	_	Internships / Technical Skill	oft		

Subject Code:	Subject Name :	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C	
BCS20A05	Data Visualization Techniques	Ту	3	0/0	0/3	4	

UNIT I CORE SKILLS FOR VISUAL ANALYSIS

12Hrs

Information visualization – effective data analysis – traits of meaningful data – visual perception – making abstract data visible – building blocks of information visualization – analytical interaction – analytical navigation – optimal quantitative scales – reference lines and regions – trellises and crosstabs – multiple concurrent views – focus and context – details on demand – over-plotting reduction – analytical patterns – pattern examples

UNIT II TIME-SERIES, RANKING, AND DEVIATION ANALYSIS

12Hrs

Time-series analysis – time-series patterns – time-series displays – time-series best practices – part-to-whole and ranking patterns – part-to-whole and ranking displays – best practices – deviation analysis – deviation analysis best practices

UNIT III DISTRIBUTION, CORRELATION, AND MULTIVARIATE ANALYSIS

12Hrs

Distribution analysis – describing distributions – distribution patterns – distribution displays –distribution analysis best practices – correlation analysis – describing correlations – correlation patterns – correlation displays – correlation analysis techniques and best practices – multivariate analysis – multivariate patterns – multivariate displays – multivariate analysis techniques and best practices

UNIT IV INFORMATION DASHBOARD DESIGN I

12Hrs

Information dashboard – categorizing dashboards – typical dashboard data – dashboard design issues and best practices – visual perception – limits of short-term memory – visually encoding data – Gestalt principles – principles of visual perception for dashboard design

UNIT V INFORMATION DASHBOARD DESIGN II

12Hrs

Characteristics of dashboards – key goals in visual design process – dashboard display media – designing dashboards for usability – meaningful organization – maintaining consistency – aesthetics of dashboards – testing for usability – case studies: sales dashboard, CIO dashboard, Telesales dashboard, marketing analysis dashboard

Total Hours: 60

TEXT BOOK:

1. Stephen Few, "Now you see it: Simple Visualization techniques for quantitative analysis", Analytics Press, 2009.

2. Nathan Yau, "Data Points: Visualization that means something", Wiley, 2013.

REFERENCES:

- 1. Stephen Few, "Information dashboard design: The effective visual communication of data", O'Reilly, 2006.
- 2. Edward R. Tufte, "The visual display of quantitative information", Second Edition, GraphicsPress, 2001.
- 3. Ben Fry, "Visualizing data: Exploring and explaining data with the processing environment", O'Reilly, 2008.
- 4. Gert H. N. Laursen and Jesper Thorlund, "Business Analytics for Managers: Taking business intelligence beyond reporting", Wiley, 2010.
- 5. Evan Stubbs, "The value of business analytics: Identifying the path to profitability", Wiley, 2011.

Subject Code: BCS18L11/BCS20L11	Subject Name : DATA MINING LAB Prerequisite: BCS18ET3								Ty. Lb.	/ L		T/ S.Lr			C
		_							Lb		0	0/0	3/	0	1
L : Lecture T : Tutorial			ised Le		P: Pro	oject R	: Resea	arch C	: Cred	dits					
T/L/ETL: Theory/Lab/I	Embedd	ed The	ory and	Lab											
OBJECTIVE:															
 Identify and cate 	-				-	organiza	ation;								
 Explain the vari 															
 Design a risk ma 				r a busi	ness or	ganizat	ion.								
COURSE OUTCOME															
CO1		Demonstrate knowledge of the range of financial organizations understand the approach to risk management the							inanci	ial rel	lated 1	risks f	acing		
CO2			ne appro						isk ide	entifi	cation	, risk			
CO3							to manage it.								
CO4		olems b		osing	appro	priate	e visu	alizati	on						
CO5		Create a application from any suitable domain by incorporating all the core conce										oncen	ts		
		mes with Program Outcomes (POs)													
COs/POs						PO8	I	PO9	PO1	10 P	O 11	PC	12		
CO1	3	3	2	3	2	3	2	3		2	3		2		3
CO2	3	3	2	3	2	3	2	2		2	3		2		3
CO3	3	3	1	3	2	3	2	2		2	3		2	2	
CO4	3	2	3	3	1	2	2	2		2	3		3	2	
CO5	3	2	3	3	3	1	1	2		2	3		3		2
COs / PSOs		PSO1			PSO2	1		PS	03]	PSO4		
CO1		2			2			1					2		
CO2		2			2								2		
CO3		2			2			2					2		
CO4		3			$\frac{2}{1}$			3					3		
CO5		3			3			3					3		
3/2/1 indicates strength	of cor	_	n 3 – 1	High. 2	_	lium. 1	l – Lov								
Category	Basic Sciences	Engineering Sciences	Humanities and Social c	Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
							✓								

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18L11/	DATA MINING LAB	Lb	0	0/0	3/0	1
BCS20L11		Lo		0, 0	37 0	

LIST OF EXPERIMENTS

- 1. Introduction to the Weka machine learning toolkit
- 2. Classification Introduction to exploratory data analysis using Rattle an open source Tool(R)
- 3. Introduction to regression using Rattle an open source Tool. (R)
- 4. using the Weka toolkit Part 1
- 5. Classification using the Weka toolkit Part 2
- 6. Performing data preprocessing for data mining in Weka
- 7. Performing clustering in Weka
- 8. Association rule analysis in Weka
- 9. Data mining case study using the CRISP-DM standard
- 10. Data mining case study using the CRISP-DM standard

Subject Code: BCS18L12/	Subject Name : DOT NET LAB	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS20L12	Prerequisite: BIT18L08	Lb	0	0/0	3/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- To learn write console application and web based applications in C#.net
- To learn the windows application in VB.net
- To have knowledge to develop web form application ASP.net
- To learn end user application using data base connection using ADO.Net.
- To have knowledge to develop a web service using net frame work.

		ge to design platform independent application using Dot net framework											
COURSE OUTCOM	ES (CO	(3-5)	5)										
CO1									he .NET			C#.	
CO2			ed data-	driven ap	plication	ns using	the .NET	Γ Framev	ork, C#,	SQL Ser	ver and		
	ADO.N												
CO3	Create	web-bas	ed distril	buted ap	plication	s using (C#, ASP.	NET, SC	L Server	and AD	O.NET		
CO4	Able to	connect	fronten	d and ba	ckend us	ing data	base con	nectivity					
CO5	Design	and dev	elop the	distribut	ted applic	cations u	sing Dot	net fram	ework				
Mapping of Course C	Outcome	s with P	rogram	Outcom	es (POs))							
COs/POs									PO9	PO10	PO11	PO12	
CO1	2	2	2	3	3	1	2	1	3	2	3	3	
CO2	2	3	3	3	3	2	2	3	3	3	2	3	
CO3	3	3	3	3	3	2	3	2	3	3	3	3	
CO4	3	3	3	3	3	2	3	2	3	3	3	3	
CO5	3	3	3	3	3 3 2			2	3	3			
COs / PSOs	PSO1			PSO2				PSO3	3		PSO4	1	
CO1		3		2				2			2		
CO2		3		2				2			3		
CO3		3			3			3					
CO4		3			3			3					
CO5		3			3			3			3		
3/2/1 indicates streng	th of cor	relation	3 – Hi	gh, 2-1	Medium	1 – Lo	W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18L12/ BCS20L12	DOT NET LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

C#.NET

- 1. Implementation of Operator Overloading
 - a. Complex Number
 - b. Matrix
 - c. Time(+.-)
- 2. Implementation of Multiple Inheritance
 - a. Employee
 - b. Area of an Object
- 3. Implementing Multithreading
- 4. Exception Handling

VB .NET

- 5.Designing a Calculator
- 6. Implement File Handling (Read, Delete, Modify)
- 7. Implement Exception Handling
 - a. Voter problem
 - b. Student Status

ASP.NET

- 8. Super Market
- 9. Hotel Management System

ADO. NET

- 10. Student Attendance Calculation
- 11. Hospital management System

WEB SERVICE

12. Income tax calculation

Subject Code	Subjec	t Name	•						Ty/	,	L	T /	P/R	C
BCS18L13/	Buojee	t I vallic		IFCT	PHASE	7 . T			Lb/			S.Lr	1/1	٠ ح
BCS20L13			INO	JECT		<i>3</i> - 1						S.Lr		
BCB20E13	Duana		TT						ETI	1	0	0/0	2/2	
I . I astuna T		uisite: N				- D . D.	aiaat D	. D	Lb	Y. Cm	0	0/0	3/3	2
L: Lecture T						g P:Pro	ojeci K	: Kese	aren C	: Cr	eans			
T/L/ETL : Th						is to an	lminoto	the ear	o domi	2 atız	drian	d marri	la an	
OBJECTIVE opportunity to														tion of
a faculty men skills acquired														
creatively, fin												K CITUCA	ny and	ı
COURSE O					iicai uci	C1510115 6	ind to p	resent	CIICCII	vciy	•			
COURSE OF		the know			le acqui	red in th	ne cours	e of st	ndv ad	dres	cina a	a specifi	ic prob	lem or
COI	issue.	the knov	wieuge a	and Skn	is acqui	i cu iii u	ie cours	se or su	uuy au	iuics	sing a	a specifi	c proc	icili oi
CO2		courage s	tudente	to thinl	z critica	lly and	creative	ly abou	ut soci	etal i	icciie	s and de	velon	
CO2		y and re				iny and	cicative	1y a00	ut soci	ctar	issuci	s and de	velop	usci
CO3		ine resea				rate thei	r profic	iency i	n com	mun	icatio	n ckille		
CO4		e on the												
CO4	talents		CHarich	ges of it	zam w or	к, ргера	ne a pre	scman	on and	ı ucı	1101151	rate the	mnacc	
CO5			students with industry knowledge and							andi	no c	of vario	nis n	ossible
CO3	techno		udents	with industry knowledge and u						anai	ng (n vario	ous p	OSSIDIC
Mapping of (oc with	Progr	am Out	romes (POc)							
COs/POs	PO1	PO2		PO4			PO7	PO8	PC)9	PO1	0 PO	11 P	O12
CO1	3	3	2	3	2	3	2	2		3	2		3	3
CO2	3	3	3	3	3	3	3	2		2	2		3	3
CO3	3	3	3	3	3	3	3	2		2	3		3	3
CO4	3	2	3	3	3	3	2	3		3	3		3	3
CO5	2	2	2	2	2	2	3	2		2	2		1	2
COs / PSOs	 -	PSO1			PSO2			PS()3				SO4	
CO1		3			2			3					3	
CO2		3			3			3					3	
CO3		3			3			3					3	
CO4		2			2			2					2	
CO5		3			2			3					2	
3/2/1 indicate	es stren	_	orrelati	on 3 –		2 – Med	lium. 1							
	1													
		8	ial					ica						
		ce	၁၀၀					hh						
_		ier	57		ve		ect	Tec						
ory	ces	S	ano	re	ecti	ves	roj	ps / T Skill						
Category	iei	ing	ies	ပိ	EK	cti	/ P	jip. S	ls					
Ca	Sc	eer	mit ces	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skill					
	sic	gin	ma	gra	gra	en	ıcti	ıter	ft S					
	Basic Sciences Engineering Sciences Humanities and Social Sciences		Prc	Prc	Op	Pra	Ir	So						
	B _c Er S _c						√							
							V							

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18L13/	PROJECT PHASE – I	Lb	0	0/0	3/3	2
BCS20L13	I ROJECT FHASE – I					

LIST OF EXPERIMENTS

B.Tech CSE Project carries 12 credits of which , Phase I carries 2 credit. In Phase I ,Students are expected to

- (i) Identify a Problem.
- (ii) Have the feasibility explored.
- (iii) Freeze the Requirement specification (both user and system).
- (iv) Construct the architectural model (as many as required).
- (v) Design the solution.
- (vi) If possible publish the Feasibilty study as a survey paper

Subject Code: BHS18FLX/BHS20F	LX		t Name :		GUAGE	(EVAL	UATIO	N)	Ty/ Lb/ ETL	L	S.I		P/R	С
				Prer	equisite:	NIL			Lb	0	0/0		3/0	1
L: Lecture T: Tutoria	ıl S.Lr	: Superv	ised Lea	rning P	: Project	t R:Re	search C	: Credits						
T/L/ETL: Theory/Lab	/Embed	ded The	ory and I	Lab										
OBJECTIVE : To r	ecognize	the cult	ural valu	ies, prac	tices, and	d heritag	e of the	foreign c	country, c	comm	unica	te eff	ectivel	y in
a foreign language and	d interact	in a cul	turally a _l	ppropria	te manne	er with n	ative spe	eakers of	that lang	guage				
COURSE OUTCOM	ES (CO	s):(3-	5)											
CO1		Achiev	e function	onal prof	iciency	in listeni	ng, spea	king, rea	ding, and	l writ	ing.			
CO2		Develo	p an ins	sight into	the natu	ire of lai	nguage it	self, the	process	of lan	guage	e and	culture	;
		acquisi												
CO3							texts of	different	t genres.					
			Decode, analyze, and interpret authentic texts of different with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO1	1 P	D12
CO1	1	1	1	1	1	3	1	3	2	3		3	1	
CO2	2	1	1	1	1	3	1	3	3	3		3	1	
CO3	1	1	2	2	1	3	2	3	2	3		3	1	
COs / PSOs	PS	01	PS	O2	PS	PSO3 PSO4							·	
CO1	2	/1	1		2		3							
CO2	1		2		3		1							
CO3	3		2		1		2							
3/2/1 indicates streng	th of co	rrelatio	1 3 – H	igh, 2 –	Mediun	1, 1 – L	ow							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
			✓											

Subject Code:	Subject Name : FOREIGN LANGUAGE (EVALUATION)	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BHS18FLX/ BHS20FLX	Prerequisite: NIL	Lb	0	0/0	3/0	1

OBJECTIVE:

To recognize the cultural values, practices, and heritage of the foreign country, communicate effectively in a foreign language and interact in a culturally appropriate manner with native speakers of that language

Dr.M.G.R.

Educational and Research Institute
(DEEMED TO BE UNIVERSITY)

(An ISO Certified Institution)

A NAAC

SUBJECT
SUBJECT NAME
CODE
COMPLITER SCIENCE AND ENCINEERING
S.I.

 $\begin{array}{c|c}
T/\\
S.Lr
\end{array}$ P/R C

(ARTIFICIAL INTELLIGENCE)

	SEMESTER - VIII										
Subject Code:	Subject Name:	Ty/	L	T/	P/R	C					
BCS20A06	Machine Learning	Lb/		S.Lr							
		ETL									
	Prerequisite: BCS20A01	Ty	3	0/0	0/0	3					
L: Lecture T: To	utorial S.Lr: Supervised Learning P: Project R: Research C: Cre	dits									
Ty/Lb/ETL: The	ory/Lab/Embedded Theory and Lab										
OBJEC'	TIVES:										
• The stude	ents will have knowledge about the scripting languages										
 To learn 	 To learn the JavaScript language and ability to write program on it. 										
 To learn 	To learn the PERL language and ability to write program on it.										
To study	• To study about the Python language and understand to write basic level program and advance program on										

To study about RUBY language and have knowledge to write programs.

networking, web scripting on web pages.

 To study 	about RI	bout RUBY language and have knowledge to write programs.												
COURSE OUT	COMES	(COs):	(3-5)											
CO1			concept o											
CO2	Recogn	izetheim	portance	andreleva	anceofMa	achine L	earning N	Models						
CO3	Design	the effic	ient Mac	hine Lea	rning Ap	plication								
CO4	Applyii	ng group	of data i	n Cluster	and Nor	paramet	ric Metho	ods						
CO5	Identify	theimp	ortancea	ndrelevai	nceofMad	chine Lea	arning M	odels						
Mapping of Cou														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10	PO11	PO12	
CO1	2	1	2	1	3	3	3	3		3	3	3	3	
CO2	3	3	3	2	3	3	3	3		3	2	3	3	
CO3	3	3	3	3	3	3	3	3		3	3	3	3	
CO4	2	3	2	3	3	3	3	3		2	3	2	3	
CO5	3	3	2	2	3	3	3	3		2	3	3	3	
COs / PSOs		PSO1			PSO2		PS(PSO4				
CO1		2			2			2			2			
CO2		3			3			2			3			
CO3		3			3			3				3		
CO4		3			2		2					2		
CO5		3			3			2				3		
3/2/1 indicates st	rength o	f correla	ation 3	– High, 2	<u> </u>	um, 1 –	Low	1 1				1	,	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					

BCS20A06	Machine Learning	Ту	3	0/0	0/0	3	

UNIT I Introduction to Machine Learning

9Hrs

Machine Learning – Machine learning applications – learning association – supervised learning – learning a class from examples – learning multiple classes – regression – model selection and generation – Bayestan decision theory – losses and risk – discriminant functions – association rules.

UNIT II Parametric and Multivariate Methods

9Hrs

Parametric methods – maximum likelihood estimation – Baye's estimator – parametric classification –regression – tuning model – multivariate methods – multivariate data – multivariate normal distribution – multivariate regression – dimensionality reduction – subset selection – factor analysis – multidimensional scaling – Isomap

UNIT III Clustering and Nonparametric Methods

9Hrs

Clustering - Mixtures densities - k mean clustering - special and hierarchal clustering - Nonparametric density estimation - generalization to multivariate data - nonparametric classification - outlier data - decision trees - univariate trees - pruning - rule extraction from trees - multivariate trees.

UNIT IV Linear Discrimination and Multilayer Perceptrons

9Hrs

Linear discrimination – generalizing the linear model – pair wise separation – logistic discrimination – discrimination by regression – multilayer preceptrons – MLP – back propagation algorithms – training procedures – tuning – dimensionality reduction – deep learning – local models – competitive learning – radial basis – normalized basis – learning vector quantization - mixture of experts.

UNIT V Kernel Machines and Graphical Models

9Hrs

Kernel machine – optimal separating hyper plane – v SVM – multiple kernel learning – large margin nearest neighbour classifier – graphical models – generative models – d Separation -

belief propagation – Hidden morkov models – Bayesten estimation – combining multiple learners – reinforcement learning.

Total Hours: 45

TEXT BOOKS:

- 1. Ethem Alpaydin, 2014 "Introduction to Machine Learning" 3^{r.d} Edition PHI
- 2. Snila Gollapudi, 2016 "Practical Machine Learning" PACKT.

REFERENCE BOOKS:

- 1. Tom M Mitchell, 2013 "Machine Learning" McGraw-Hill.
- 2. David Barber, 2015 "Bayesian Reasoning and Machine Learning" Cambridge University Press.

D/D C

Subject

Subject	Cubicat Name							Ty/	'	L '	T /	P/R	C	
Code:	Subject Name:							Lb	/	S	.Lr			
BCS18L14/	PROJECT (PHASE – II)							ETI						
BCS20L14	Prerequisite: BCS18L13						Lb		0 ()/0	12/12	8		
L : Lecture T	: Tutorial S.Lr : Supervised Learning P : Project R : Research C: Cre										Credits	l.		
T/L/ETL : Th	eory/La	b/Embe	edded T	heory a	nd Lab									
OBJECTIVE	E: Th	e object	ive of the	he Main	Projec	t is to c	ulminat	e the a	caden	nic st	udy and	l provi	de an	
opportunity to														
of a faculty m														
and skills acq												hink cı	ritically	1
and creatively					ke ethic	al decis	ions an	d to pi	esent	effec	tively.			
COURSE O							_							
CO1	Apply or issue	the kno	wledge	and skil	lls acqui	ired in t	he cour	se of s	study a	ıddre	essing a	specif	ic prob	lem
CO2		ourage s	etudonte	to thin	k orition	illy and	orootiv	olv ob	out co	oioto!	Licence	and de	walon	11000
COZ		y and re				illy allu	Cicativ	ciy ab	out so	ciciai	1 188008	and uc	velop	usci
CO3		ne resea				rate the	ir profi	ciency	in coi	nmu	nication	ı skills		
CO4		on the												;
	talents.			C		71 1	•							
CO5	To vali	date the	impler	nentatio	n of the	esoftwa	re/Harc	lware	systen	1				
Mapping of (Course	Outcon	nes witl	n Progr	am Ou	tcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 P	09	PO10	PO	11 PC	D12
CO1	3	3	3	3	2	3	3	1		2	2	3		3
CO2	3	3	3	3	3	3	3	2		2	2	3		3
CO3	3	3	3	3	3	3	3	2		2	3	3		3
CO4	3	2	3	3	3	3	2	3		3	3	3		3
CO5	1	2	2	2	2	2	3	2		2	2	1		2
COs / PSOs		PSO1			PSO2			PS	03			PS	04	
CO1		3			3			2				3		
CO2		3			3			3				3		
CO3		3			3				3					
CO4		2			2				2 2					
CO5		3			2		L	2				2		
3/2/1 indicate	es stren	gth of c	orrelat	<u>ion 3-</u>	– High,	2 − M€	edium,		ow			1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
							√							

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18L14/ BCS20L14	PROJECT (PHASE – II)	Lb	0	0/0	12/12	8

LIST OF EXPERIMENTS

Students are expected to carry out the following:

- (i) Implement the Design using suitable technologies.
- (ii) Generate the test cases.
- (iii) Demonstrate the solution with suitable user interface.
- (iv) Prepare a project report consolidating the phase-I and II activities.

8th SEMESTER ELECTIVES E-I& E-2 (CSE)

Subject Code: BCS18E24/ BCS20E24	Subject Name : INFORMATION STORAGE MANAGEMENT	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
	Prerequisite: BCS18004	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

T / L/ ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- Provides a comprehensive understanding of the various storage infrastructure components in data center environments.
- It enables participants to make informed decisions on storage-related technologies in an increasingly complex IT environment
- The adoption of software-defined infrastructure management and third platform technologies.
- It provides a strong understanding of storage technologies and prepares participants for advanced concepts, technologies, and processes.
- To learn the architectures, features, and benefits of intelligent storage systems
- Includes block-based, file-based, object-based, and unified storage; software-defined storage; storage networking technologies such as FC SAN, IP SAN, and FCoE SAN; business continuity solutions such as backup and replication; the highly-critical area of information security; and storage infrastructure management.

managemer	nt.												
COURSE OUT	COME	S (COs)):(3-5)									
CO1	Evalua	ite stora	ge archi	tectures	, includi	ng stora	ge subs	ystems, l	DAS, SA	N, NAS,	CAS		
CO2	Define backup, recovery, disaster recovery, business continuity, and replication												
CO3	Understand logical and physical components of a storage infrastructure												
CO4	Identify components of managing and monitoring the data center												
CO5	Define	inform	ation sec	curity ar	nd identi	fy diffe	rent stor	age virtu	ıalization	technolo	gies		
Mapping of Cor	urse Ou	tcomes	with Pr	ogram	Outcon	nes (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	1	2	2	1	2	2	2	1	3	
CO2	3	2	3	2	1	1	2	1	2	2	2	2	
CO3	3	3	3	2	2	1	1	2	2	1	3	3	
CO4	3	3	3	2	2	2	2	2	2	2	1	3	
CO5	3	2	3	2	1	2	1	1	2	2	2	3	
COs / PSOs		PSO1			PSO2		PSO3				PSO4		
CO1		3		3				3			3		
CO2	3			3				1			3		
CO3		3			3			1			3		
CO4	3 3						1				3		
CO5		3			2			2			3		
3/2/1 indicates s	trength		elation	3 – Hi	gh, 2 –	Mediun	n, 1 – I	ow					
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
					✓								

SUBJECT CODE	SUBJECT NAME	Ty/ Lb /	L	T/ S.Lr	P/R	С
BCS18E24/ BCS20E24	INFORMATION STORAGE MANAGEMENT	Ty	3	0/0	0/0	3

UNIT I Storage Systems

9Hrs

Information Storage - Evolution of Storage Technology and Architecture - Data Centre - Infrastructure - ILM - Components of Storage System Environment - Logical Components of Host RAID: Implementation, levels & comparison - ISS components, Intelligent Storage Array.

UNIT II Storage Technologies

9Hrs

Networking Technologies & Virtualization DAS – SCSI – SAN – NAS –IPSAN – CAS –Forms of Virtualization.

UNIT III Business Continuity

9Hrs

Information availability – BC Planning Life Cycle failure analysis – Backup & Recovery – Local Replication – Remote Replication.

UNIT IV Storage Security

9Hrs

Storage Security Framework – Risk Triad – Storage Security Domains – Security Implementationin Storage Networking.

UNIT V Managing Storage Infrastructure

9Hrs

Infrastructure – Storage Management Activities and Challenges – Developing an Ideal solution.

Total Hours: 45

TEXT BOOK:

1. EMC Corporation, Information Storage and Management, Wiley India, 2nd edition 2012

REFERENCE BOOKS:

- 1. Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003.
- 2. Marc Farley, "Building Storage Networks", Tata McGraw Hill, Osborne, 2001.

Subject Code:	Subje	ct Nam	e :						Ty	7/					
BCS18E25/BCS20E25	•			STRU	CTURE	MAN	AGEM	ENT	Lb		L	T/	P /	R	C
									ET			S.Lr			
	Prereq	uisite: I	BIT18IC)1					Ту	y	3	0/0	0/	0	3
L : Lecture T : Tutorial	S.Lr : S	upervis	ed Lear	ning P	: Projec	t R:Re	esearch	C: Cre	edits	<u> </u>			·		
T/L/ETL: Theory/Lab/En					3										
OBJECTIVE:															
• To learn	Networl	k Layer:	s function	onality											
To acquir	re know	ledge al	bout and	l VLA	Ns										
To unders	stand IP	routing	g, EIGR	P and C	SPF										
To test N	etwork	security	and wi	reless s	ecurity										
COURSE OUTCOMES	(COs)	: (3-5))												
CO1	Under	stand th	e use of	networ	k infras	tructure)								
CO2	Recog	nizethei	importa	nceandr	elevanc	eofVLA	Ns and	EIGR	RP						
CO3	Troub	leshoot	the netv	vork inf	rastruct	ure									
CO4					ms in th		ork infra	struct	ure						
CO5				_	s netwoi										
Mapping of Course Out	_														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8]	PO9	PO ₁	10 F	PO11	PO	12
CO1	3	2	2	2	2	3	1	3		3	3		3	2	
CO2	3	2	1	2	2	3	2	1		3	3		3	2	
CO3	3	2	2	3	2	3	2	2		3	2		3	2	
CO4	3	3	2	3	3	3	3	3		3	3		3	3	
CO5	3	3	2	3	2	3	3	3		3	3		3	3	<u> </u>
COs / PSOs		PSO1	I		PSO2			PSC	03				PSO4		
CO1		3			3			3	<u> </u>				3		
CO2		3			2			3					2		
CO3		3			2			3					2		
CO4		3			3			3					3		
CO5		3			2			3					2		
3/2/1 indicates strength	of corre		3 – Hi	gh, 2 – 1	Mediun	n, 1 – I	Low		<u> </u>				<u> </u>		
8								kill							
		S	ial					cal							
		nce	Soc		Š			hni							
>		cie	p		ive	S	jeci	[Sec]							
gor	ıce	ρυ Σ	an	ore	ect	ive	ro	L / -							
Category	ier	rin	ties	Ü	田田	ect		ips	lls						
O	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical S	Soft Skills						
	asic	ngi	um ien	150.	130.	ben	act.	Iter)ft						
	B,	펍	S. S.	Pr	Pr	O_	Pr	In	S_{C}						
					√										
					"										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ET	L	T/ S.Lr	P/R	C
BCS18E25/ BCS20E25	NETWORK INFRASTRUCTURE MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I Internetworking & Ip Addressing

9Hrs

Internetworking Models – Layered Approach – OSI Reference Models – Ethernet Networking – Cabling – Data Encapsulation – Three Layer Hierarchical model – core layer – distribution layer – Access layer – TCP/IP and DoD Model – IP Addressing – Hierarchical IP Addressing scheme - Broadcast Address.

UNIT II Subnetting, VLSMAnd Ios

9Hrs

Subnetting basics – CIDR – VLSM Design – Summarization – Troubleshooting IP Addressing – IOS user interface – CLI – Router and switch Administrative Configuration – Router Interfaces – viewing, saving, and erasing configuration

UNIT III Managing Internetwork And Ip Routing

9Hrs

Internal component of a Router – routing boot sequence – configuration register – backing up and restoring configuration – CDP – resolving hostnames – Checking network connectivity – IP routing basics – Static routing – default routing – dynamic routing – RIP – IGRP

UNIT IV Eigrp, OSPF, STP and VLANS

9Hrs

EIGRP features – RTP – DUAL – EIGRP to support large Networks –Configuring EIGRP - Load balancing – OSPF terminology – Configuring and verifying OSPF – DR and BDR elections – Loopback interfaces – troubleshooting – STP spanning tree terms and operations – VLANs Basics – memberships – VTP – Configuring VLAN – Inter VLAN routing.

UNIT V ACLS, NAT and Wireless Technologies

9Hrs

Access Lists, VTY access, advanced Access List, Named ACLs, monitoring Access List, configuring access list – NAT names – PAT configuration – NAT using SDM – Wireless technologies – Unified wireless solutions – split MAC architecture – MESH and LWAPP - wireless security

Total Hours: 45

TEXT BOOKS:

- 1. Todd Lammle, 2011 "CCNA Cisco Certified Network Associate study guide Wiley India.
- 2. Brian Hill, 2013 "The complete Reference Cisco" Tata McGraw-Hill.

- 1. Richard Deal, 2013 "CCNA Cisco Certified Network Associate study guide" Tata McGraw-Hill.
- 2. Steven Latre et al 2015 "Intelligent Mechanism for Network Component and Security" Springer.

Subject Code: BCS18E26/ BCS20E26		Name : DUNDAT	TIONS O	F PARA	LLEL P	ROGRA	AMMIN(3	Ty/ Lb/ ETL	Lb/ ETL S.Lr P/R								
	Prerequ	isite: BC	CS18007						Ty	3	0/0	0	0/0	3				
L: Lecture T:						ject R:1	Research	C: Credi	S									
T / L/ ETL : The		Embedde/	ed Theor	y and Lat)													
OBJECTIVE:																		
	ndamental	•					tributed (Computii	ıg paradig	gms of	paralle	el prog	rams.					
•	tematic n																	
	hniques t			program	ming in J	ava.												
COURSE OUT	COMES																	
CO1					ent Progr		•	S										
CO2					maphore													
CO3		Learn th	e Messag	ge Passing	g method	s and Pr	ocess Inte	eraction f	or Parall	el Pro	gramm	ning						
CO4		Understa	and the p	ractical p	arallel pr	ogrammi	ng scena	rios and	possibilit	ies								
CO5	Analyz	e parallel	program	ming libi	raries and	l apply pa	arallel pro	ogrammi	ng tools									
Mapping of Course Outcomes with Program Outcomes (POs)																		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO1	1 P	O12				
CO1	3	3	2	1	1	1	1	2	2		1	3		1				
CO2	3	3	2	1	1	1	1	2	2		1	3		1				
CO3	3	2	2	1	1	1	1	2	2		1	3		1				
CO4	3	2	2	1	1	1	1	1	2		2	1		1				
CO5	3	2	3	2	2	2	1	2	2		3	2		2				
COs / PSOs		PSO1			PSO2			PSO	3			PS()4					
CO1		3			3			1				2						
CO2		3			3			1				2						
CO3		3			2			1				2						
CO4		3			3			1				2						
CO5		3			3			2				3						
3/2/1 indicates	strength	of corre		– High,	2 – Medi	ium, 1 –	Low	1 1										
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills									
					-				-									

Dr.M.G.R.

Educational and Research Institute (DEEMED TO BE UNIVERSITY) (An ISO Certified Institution)

1	TED WIT	H
Sol	DITED WIT	GRAD
A)
*	NAAC	*
*	NAAC	*/

SUBJECT CODE		Ty/	RING	T/ S.Lr	P/R	C
BCS18E26/ BCS20E26	FOUNDATIONS OF PARALLEL PROGRAMMING	Ту	3	0/0	0/0	3

UNIT I Concurrent Programming Concepts

9Hrs

Concurrent programming concepts, Techniques for parallelizing programs, Shared Variable Programming: Process and Synchronisation - Synchronization, atomic actions, and await statements, Semantics of concurrent programs; ways to avoid interference, Safety and liveness properties; Critical sections: spin locks , efficient spin locks; fair solutions , Parallel programming concepts; bag of tasks paradigm; Pthreads library , Barriers: counter, coordinator, combining tree , Symmetric barriers; data parallel algorithms , Parallel scientific computing

UNIT II Semaphores And Monitors

9Hrs

Semaphores: mutual exclusion, signaling, split binary, resource counting, dining philosophers, readers/writers, passing the baton, resource allocation and scheduling, Implementations of Semaphores in kernels, multiprocessors;

Monitors: basic concepts, signaling disciplines, synchronization techniques, larger examples; use in Java, Pthreads, Implementation of Monitors in Kernel

UNIT III Message Passing And RMI

9Hrs

Message passing: basic concepts and examples , clients and servers , file servers, interacting peers, Synchronous, Message passing in MPI, and Java; **Remote operations**; RPC; Java RMI , **Rendezvous, distributed readers and writers**

UNIT IV Process Interaction And Distributed Programming

9Hrs

Process interaction Paradigms: Managers/Workers, heartbeat algorithms; pipeline algorithms, Probe/Echo Algorithm, Broadcast Algorithm, Token Passing Algorithms - **Distributed programming**: replicated files, dining philosophers, distributed file systems

UNIT V Parallel Programming

9Hrs

Speed and Efficiency, Overhead and Challenges – **Scientific Computing**: Grid Computations, Particle Computations, Matrix Computations – **Case Study of Parallel Programming Libraries** in Pthread, MPI and OpenMP – **Parallelizing Compilers** – Other Parallel Programming Models – **Parallel Programming Tools**

Total Hours: 45

TEXT BOOK:

1. Greg Andrews ,2000, Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley, Digitized in 16 Nov 2007, ISBN 0201357526, 9780201357523

REFERENCE BOOK:

1. Zbigniew J. Czech, 2016, Introduction to Parallel Computing, Cambridge University Press, ISBN 1316802787, 9781316802786

Subject Code:	Subje	ct Name													C
			VIR	TUAL	IZATI	ON			Ty /Ll	ETL	L	T/S.	Lr P	/R	
BCS18E27/ BCS20E27									_						<u> </u>
		quisite:							Ту		3	0/	0 0	/0	3
				ning P	: Projec	et R:R	Research	ı C: C	redits						
Ty/Lb/ETL: Theory/Lab/	Embedo	ded The	ory and	Lab											
OBJECTIVES:										,	C T T'	. 1.	. •		
• Candidates sh				tand the	e genera	ıl conce	pts, the	ory ar	nd termi	nology o	t Vıı	tualız	ation.		
Work in Netw															
CO1				of viet	volizoti	on took	201000								
CO1 CO2				of virt				no Vin	tualizati						
				•					tuanzan	on					
CO3				work ar			ntecture	<u> </u>							
CO4				erent sto			D 1								
CO5				ent Vir			Product	S							
Mapping of Course Outc	PO1	PO2	ogram (PO3	Outcon PO4	nes (PO PO5	PO6	PO7	т	PO8	PO9	Т	O10	PO11	D/)12
COS/FOS			2		2			1			P			+	
CO2	3	2	2	1	2	1	1		1	1 1		1	1 1		$\frac{2}{2}$
CO2	3	2	2	1	2	1	1		1	1		1	1		2
CO4	3	2	2	2	2	1	1		2	2		1	2		3
CO5	3	2	2	2	2	1	1		2	2		1	2		2
CO3	3	<u> </u>	2	<u> </u>		1	1					1			
COs / PSOs		PSO1			PSO2				PSO3		1		PSO4		
CO37 1503		1501			1502				1505				1504		
CO1		3			2				1				2		
CO2		3			2				1				2		
CO3		3			2				1				2		
CO4		3			1				2				2		
CO5		3			1				2				2		
3/2/1 indicates strength of	f corre	lation	3 – Hi	gh, 2 –	Mediu	m, <u>1</u> – 1	Low								
								Skill							
		Ses	Social					ical							
		Suc	So		SS		+	hn							
È	Š	Scie		4)	tive	S	jec	Гес							
oge	nce	g g	s a	Ore		tive	Prc	. / s							
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	ills						
0	c S	me(nan: nce	rar.	ŗar	n E	tice	ınsl	Sk						
	asi	igu	Humanit Sciences	rog	rog	pe l	rac	nteı	Soft Skills						
	B	Щ	ΞŚ	<u> </u>	Ъ		<u> </u>	l.	S						
					✓										
	1														

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18E27/ BCS20E27	VIRTUALIZATION	Ту	3	0/0	0/0	3

UNIT I Overview of Virtualization

9Hrs

Basics of Virtualization - Virtualization Types - Desktop Virtualization - Network Virtualization - Server and Machine Virtualization - Storage Virtualization - System-level or Operating Virtualization - Application Virtualization - Virtualization - Advantages - Virtual Machine Basics - Taxonomy of Virtual machines - Process Virtual Machines - System Virtual Machines - Hypervisor - Key Concepts

UNIT II Server Consolidation

9 Hrs

Hardware Virtualization – Virtual Hardware Overview - Sever Virtualization – Physical and Logical Partitioning - Types of Server Virtualization – Business cases for Sever Virtualization – Uses of Virtual server Consolidation – Planning for Development – Selecting server Virtualization Platform

UNIT III Network Virtualization

0Hrc

Design of Scalable Enterprise Networks - Virtualizing the Campus WAN Design - WAN Architecture - WAN Virtualization - Virtual Enterprise Transport Virtualization—VLANs and Scalability - Theory Network Device Virtualization Layer 2 - VLANs Layer 3 VRF Instances Layer 2 - VFIs Virtual Firewall Contexts Network Device Virtualization - Data-Path Virtualization Layer 2: 802.1q - Trunking Generic Routing Encapsulation - IPsec L2TPv3 Label Switched Paths - Control-Plane Virtualization—Routing Protocols- VRF - Aware Routing Multi-Topology Routing.

UNIT IV Virtualizing Storage

9Hrs

SCSI- Speaking SCSI- Using SCSI buses – Fiber Channel – Fiber Channel Cables – Fiber Channel Hardware Devices – iSCSI Architecture – Securing iSCSI – SAN backup and recovery techniques – RAID – SNIA Shared Storage Model – Classical Storage Model – SNIA Shared Storage Model – Host based Architecture – Storage based architecture – Network based Architecture – Fault tolerance to SAN – Performing Backups – Virtual tape libraries.

UNIT V Virtual Machines Products

9Hrs

Total Hours: 45

Xen Virtual machine monitors- Xen API – VMware – VMware products - Vmware Features – Microsoft Virtual Server – Features of Microsoft Virtual Server

TEXT BOOKS:

- 1. William von Hagen (2008) Professional Xen Virtualization, Wrox Publications
- 2. Chris Wolf, Erick M. Halter (2005) Virtualization: From the Desktop to the Enterprise, APress

3

- 1. Reddy, Victor Moreno (2006) Network virtualization, Cisco Press
- 2. James E. Smith, Ravi Nair (2005) Virtual Machines: Versatile Platforms for Systems and Processes, Elsevier/Morgan Kaufmann
- 3. David Marshall, Wade A. Reynolds (2006) Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center, Auerbach Publications

Subject Code:	Su	ıbject Na	ame:			RIBUTI	ED FILI	E	Ty/		T	7/		
BCS18E28/				SYST	EM				Lb/	L	S.I		P/R	C
BCS20E28									ETL					
			BCS 1800						Ty	3	0/	0	0/0	3
L : Lecture T : Tutorial					Project R	: Resea	rch C: C	redits						
T/L/ETL: Theory/Lab/F	Embedde	d Theory	y and Lal)										
OBJECTIVE :														
 To understa 					•									
To acquire 1		-			IG and (OOZIE								
 To understa 		•	pes and	formats										
To examine			_											
To understand the conce			lume and	l Sqoop										
COURSE OUTCOME														
CO1			t the rec											
CO2	• •		concepts											
CO3			and the i			evanceof	HDFS.							
CO4			us conce											
CO5			the type			MapRed	uce							
Mapping of Course Ou										•				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 I	PO10	PO11	P	O12
CO1	3	2	2	2	3	3	3	2	3		3	3		3
CO2	3	2	2	2	3	3	2	2	3		3	3		2
CO3	2	2	3	2	3	3	2	2	1		1	2		1
CO4	3	2	3	1	3	2	2	2	2		2	1		1
CO5	2	2	2	1	1	2	2	2	2		2	1		1
COs / PSOs		PSO1			PSO2			PSC)3			PSO	4	
CO1		3			3			1				2		
CO2		2			1			2				2		
CO3		2			2			1				2		
CO4		1			2			2				1		
CO5		2			2			1				1		
3/2/1 indicates strength	of corr	elation	3 – High	h, 2 – M	edium,	1 – Low								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
					✓									

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18E28/ BCS20E28	HADOOP DISTRIBUTED FILE SYSTEM	Ту	3	0/0	0/0	3

UNIT I Hadoop Introduction

9Hrs

Distributed and parallel computing - HDFS and MapReduce - Hadoop function - cloud deployment and delivery model - In memory computing technology - Hadoop ecosystem - Hadoop distributed file system - HDFS architecture - HDFS files - HDFS high availability - Hadoop YARN - Hbase and HDFS - Hive - Pig - Sqoop - ZooKeeper - Flume - Oozie.

UNIT II MapReduce, HBase And Big Data Technology

9Hrs

MapReduce framework – optimaize MapReduce job – roles of HBase in Big Data Processing.Big Data stack – Virtualization and Big Data – Virtualization Approaches – CAP Theorem – non-relational database – polyglot persistence – Big Data analytics and Data warehouse – simple MapReduce application – designing MapReduce.

UNIT III YARN And Hive

9hrs

Background of YARN – Advantages – Architecture –schedulers – configurations – commands – YARN containers – Registry – Hive Services – data types – built in functions – Hive DDL – data manipulation in Hive – Data retrieval Queries – using JOINS in Hive.

UNIT IV Pig And Oozie

9Hrs

Pig architecture – running Pig – Pig Latin – working with operators in Pig – Debugging Pig – functions in pig – Error Handling in Pig – Oozie – benefits – configuration – Oozie workflow – Oozie coordinator – Oozie bundle – Oozie parameterization – Oozie job execution model – Oozie SLA.

UNIT V NosQL, Flume And Sqoop

9Hrs

Total Hours: 45

Characteristics of NoSQL – Types of NoSQL data Models – Schema less databases – materialized view – distribution models – sharding – Flume – Flume Architecture – Sqoop – importing data – Mahout – machine learning – collaborative filtering – clustering – classification – Mahout algorithms – Environment for Mahout

TEXT BOOKS:

- 1. DT Editorial Services, 2016 "Big Data Black Book" dreamteck press.
- 2. Alex Holmes, 2015 "Hadoop in Practice" dreamteck press.

- 1. Tom White, 2015 "Hadoop The Definitive Guide 4th edition Oreilly.
- 2. Shiva Achari 2015 "Hadoop Essentials" Packt Publishing.
- 3. Henry H Liu, 2014 "Hadoop 2 Essential" Creative Independent Publishing.
- 4. Jeffrey Aren, 2017 "Sams Teach Yourself Hadoop in 24 hours" Pearson.

Subject Code: BCS18E29/ BCS20E29	Subje	ct Nan	ne : MOBI	LE D	ATAB	ASES			Ty Lb ET	o /	L	T/ S.L	v	/R	C
	Prerec	quisite:	BCS18	3004					T	y	3	0/0) 0	/0	3
L : Lecture T : Tutorial	S.Lr : S	Supervi	sed Lea	rning	P : Proj	ect R:	Resear	ch C:	Cred	its					
T/L/ETL: Theory/Lab/En	nbedde	d Theo	ry and l	Lab											
OBJECTIVE:															
 To learn about the 	e funda	mentals	s of dist	tributed	l databa	ises									
 To understand Da 	ata Proc	essing	and mo	bility r	nodels										
 To learn about the 	e Data (Consist	ency ar	nd Cond	currenc	y Contr	ol mecl	nanisn	ns						
To study mobile l			•		•	•				adcast	scher	nes			
COURSE OUTCOMES				•											
CO1			he conc	epts of	Mobile	e Comn	nunicati	ion.							
CO2			sic con	_											
CO3			oncepts						abase	es.					
CO4			ncurren								s.				
CO5	•		erent M				•								
Mapping of Course Out		_						11							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO ₁	10	PO11	P(D12
CO1	3	1	1	1	2	2	1	2		2	2		1	+	3
CO2	3	2	3	2	1	1	1	1		2	2		2		3
CO3	3	2	3	2	2	1	1	2		2	1		3		2
CO4	3	2	2	1	2	2	1	2		2	2		1		3
CO5	3	2	3	2	1	2	1	1		2	2		2	+	3
COs / PSOs		PSO1	J		PSO2			PS	03		<u> </u>		PSO ₄		
CO57 1505		1501			1502			10					150		
CO1		3			3			3	3				3		
CO2		1			2			3	3				3		
CO3		1			2			2	2				3		
CO4		2			2			2	2				3		
CO5		2			3			3	3				3		
3/2/1 indicates strength	of corr	elation	3 – H	ligh, 2 -	– Medi	um, 1	- Low								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
					✓										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18E29/ BCS20E29	MOBILE DATABASES	Ту	3	0/0	0/0	3

UNIT I Introduction 9Hrs

Fully connected information space – Types of Mobility – Wireless Network Communication. Radio Frequency: Spectrum and Band – Cellular Communication - Continuous Connectivity – Structure of a Channel – Absence of Free Channel – Signal Fading – Frequency Reuse – PCS and GSM – PCS Personal Communication Service – Interface – Call Processing – GSM Global System for Mobile Communication – Location and Handoff Management – Location Management – Handoff Management – Roaming.

UNIT II Fundamentals of Distributed Databases

9Hrs

Conventional Database Architecture – Database Partition and Distribution – Database Processing – Transaction Structure – Serialization of Transactions – Serializability – Based Correctness Criteria – Serializability Theory – Degree of Isolation – Advanced Transaction Model – Nested Transaction Model – SAGA – Cooperative Transaction – ConTract – Flex Transaction – Introduction to Concurrency Control Mechanisms – Ways of Locking Data Items – The Phantom Problem – Multigranularity Locking – Heuristic Approach in Locking Schemes – Non-Locking Based Schemes

UNIT III Data Processing and Mobility

9Hrs

Effect of Mobility on the Management of Data – Transaction Management in Mobile Database Systems – Mobile Database System – Transaction Execution in MDS – Mobile Transaction Model – Execution Model based on ACID Transaction 230 CS-Engg&Tech-SRM-2013 Framework – Pre-write Transaction Execution Model – Mobile Transaction Models – HiCoMo – Moflex - Kangaroo – MDSTPM Transaction Execution Model – Mobilaction – Atomicity for Mobilaction – Isolation for Mobilaction – Consistency and Durability for Mobilaction

UNIT IV Data Consistency and Concurrency

9Hrs

Data Consistency in intermittent |Connectivity - The Consistency Model - Weak Connectivity Operation - A Consistency Restoration Schema - Concurrency Control Mechanism - Transaction Commit - Commitment of Mobile Transactions - Transaction Commitment in Mobile Database Systems.

UNIT V Mobile Database Recovery

9Hrs

Total Hours: 45

Log Management in Mobile Database Systems – Mobile Database Recovery Schemes – Wireless information Broadcast – introduction – Broadcast Disk – Broadcast Infrastructure – Exponential Index – Location-Based Indexing – OnDemand Data Scheduling – Data Dissemination System.

TEXT BOOK:

1. Vijay Kumar, 2006 "Mobile Database Systems", Wiley Inderscience Publication, 2006

- 1. Leong (Hong VA), 1999 Lee (Wang Chen), "Mobile Data Access", Springer.
- 2. Rifaat A. Dayem, 1997 "Mobile Data & Wireless LAN Technologies", Prentice Hall Inc.
- 3. TAN(Kian Lee), Franklin(Michael J), "Mobile Data Management", Springer.

Subject Code: BCS18E30/	Subject Name : WEB ENGINEERING	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS20E30	Prerequisite: BIT18I02	Ty	3	0/0	0/0	3
L : Lecture T	: Tutorial $S.Lr:$ Supervised Learning $P:$ Project $R:$	Researc	h C: Cı	edits		

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- To be able to analyze and design comprehensive systems for the creation, dissemination, storage, retrieval, and use of electronic records and documents
- To learn and use some of the client-side and server-side languages used to manipulate information on the World Wide Web – i.e. ASP.NET, and Javascript.
- To learn techniques and evaluation metrics for ensuring the proper operability, maintenance and

		web ap			on met	1105 101	Clisui	ing tik	prope	г орсга	omity, m	lamichan	ice and
COURSE O													
CO1	Reme	mberin	g the w	eb com	ponent	S							
CO2	Analy	se the v	web fra	meworl	k and a	ctivities	3						
CO3	Apply	ing the	comm	unicatio	on conc	epts int	o web	engine	ering				
CO4									design				
CO5									velopm	ent			
Mapping of	Course							s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7		O8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	2	3	2		2	1	1	2	2
CO2	2	2	2	3	2	2	2		2	3	2	2	2
CO3	3	1	2	3	3	1	1		1	2	3	1	1
CO4	3	2	3	3	2	2	1		1	2	2	3	3
CO5	3	3	3	2	2	2	3		2	2	2	3	3
COs/PSOs		PSO1			PSO ₂			PS	SO3			PSO4	
CO1		2			2				2			3	
CO2		2			2				1			2	
CO3		1			1				2			2	
CO4		2			2				1			3	
CO5		2			3				1			3	
3/2/1 indicate	es strei	ngth of	correla	ation (<u> 3 – Hig</u>	h, 2 - 1	Mediun	n, 1 –	- Low	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
					✓								

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18E30/ BCS20E30	WEB ENGINEERING	Ту	3	0/0	0/0	3

UNIT I Web-Based Systems

9 Hrs

The Web-Web Applications-Web Engineering-The Components of Web Engineering

UNIT II A Web Engineering Process

9 Hrs

Defining the Framework-Incremental Process Flow- Generic Actions and Tasks for the Web Framework-Umbrella Activities

UNIT III Communication

9 Hrs

The Communication Activity – Formulation – Elicitation- Identifying Web App Increments- Negotiation

UNIT IV Planning

9 Hrs

Refining Framework Activities-Building a Web Team - Managing Risk - Developing a Schedule

UNIT V The Modelling Activity:

9 Hrs

Modelling as a Concept - Modelling Frameworks - Modelling Languages - Existing Modelling Approaches

Total Hours: 45

TEXT BOOK:

1. Web Engineering: A Practitioner's Approach by Roger Pressman and David Lowe, McGraw-Hill, 2009.

- 1. Denise M. Woods and William J. Dorin 2012 HTML and CSS: Comprehensive 7th edition,. Publisher: Cengage Learning; ISBN-10: 1133526144
- 2. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, 2012 Internet & World Wide Web How to Program, 5/e Pearson Education.

Subject Code: BCS18E31/ BCS20E31	Subject	t Name :		G NETV	VORKS	}			Ty Lt ET	b /	L	T/ S.L	1 1/2/	'R	С
	Prerequ	isite: B	IT18I01						T	y	3	0/0	0/	/0	3
L : Lecture T : Tutoria	1 S.Lr :	Supervi	sed Lear	ning P:	Project	R : Res	earch C:	Credits	S	<u>- </u>					
T / L/ ETL : Theory/La	ab/Embe	dded Th	eory and	Lab											
OBJECTIVE:															
 To understand 	the lates	t technol	logy in n	nobile co	ommunic	cation.									
 To know recer 	nt develo	pment in	wireles	s commu	inication	l .									
 To understand 	_	•			,	gh wirele	ess netwo	ork							
To learn the technolog				chnolog	у										
COURSE OUTCOM															
CO1							for new i						nication	1.	
CO2	•						ning for								
CO3	Predict	LTE	System	Perform	mance	incorpor	ating o	ptimiza	ation	techi	niques	s fo	or high	sp	eed
		inication													
CO4							tworks f				hput				
CO5		_					ements in	1 4G Ne	etwor	ks					
Mapping of Course O												•			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO		PO11	PO	
CO1	1	2	2	3	1	2	2	3		1	3		3		3
CO2	1	2	2	3	3	2	2	3		3	3		2		3
CO3	2	2	3	3	3	3	2	3		3	3		3		3
CO4	3	3	3	3	3	3	3	3		3	3		3		3
CO5	3	3	3	3	3	3	3	3		3	3		3		3
COs / PSOs		PSO1			PSO2			PS()3				PSO4		
CO1		2			3			2					2		
CO2		3			3			2					2		
CO3		3			3			3					3		
CO4		3			3			3					3		
CO5		3			3			3					3		
3/2/1 indicates streng	th of cor	relation	3 – Hi	gh, 2-1	Medium	, 1 – Lo	W								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
					./									1	

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18E31/ BCS20E31	4G NETWORKS	Ту	3	0/0	0/0	3

UNIT I LTE Network Architecture and Protocols

9 Hrs

Evolution of 3GPP Standards-Radio Interface Techniques in 3GPP Systems-Radio Access Mode Operations-Spectrum Allocation in UMTS and LTE-EPS Interfaces-EPS Protocols and Planes-EPS Procedures.

UNIT II LTE Air Interface and Procedures

9 Hrs

LTE Protocol Stack - SDU and PDU - LTE Radio Resource Control (RRC) - LTE Packet Data Convergence Protocol Layer (PDCP)- LTE Radio Link Control (RLC)- LTE Medium Access Control (MAC) - LTE Physical Layer (PHY)- Channel Mapping of Protocol Layers- LTE Air Interface

UNIT III Analysis and Optimization of LTE System Performance

9Hrs

Deployment Optimization Processes - LTE Performance Analysis Based on Field Measurements - LTE Case Studies and Troubleshooting- LTE Inter-RAT Cell Reselection- Inter-RAT Cell Reselection Optimization Considerations- LTE to LTE Inter-frequency Cell Reselection- LTE Connected Mode Discontinuous Reception - Circuit Switch Fallback (CSFB) for LTE Voice Calls- Multiple-Input, Multiple-Output (MIMO) Techniques.

UNIT IV Coverage And Capacity Planning Of 4G Networks

9 Hrs

LTE System Foundation- PCI and TA Planning- PRACH Planning- Coverage Planning- LTE Throughput and Capacity Analysis.

UNIT V Voice Evolution in 4G Networks

9 Hrs

Voice over IP Basics- Voice Options for LTE- IMS Single Radio Voice Call Continuity- VoLTE Features- Deployment Considerations for VoLTE. Carrier Aggregation- Enhanced MIMO.

Total Hours: 45

TEXT BOOK:

1. Design, Deployment and Performance of 4G-LTE Networks- A Practical Approach- Ayman Elnashar Emirates Integrated Telecomms Co., UAE- Mohamed A. El-saidny QUALCOMM Technologies, Inc., USA- Mahmoud R. Sherif Emirates Integrated Telecomms Co., UAE. Wiley Publication.

REFERENCE BOOK:

1. Clint Smith, P.E., Daniel Collins, Wireless Networks: Design and Integration for TE,EVDO,HSPA and WiMax Third Generation.

Subject Code: BCS18E16 / BCS20E16	Subje	ct Nam		BASE	SECUI	RITY			Ty Lb ET	/	L	T S.I		P/R	С
	Prerec	quisite:	BCS18	004					Ту		3	0/	0	0/0	3
L : Lecture T : Tutorial	S.Lr : S	upervis	ed Lear	rning F	: Proje	ect R:	Researc	ch C: C	Credi	ts					
Ty/Lb/ETL: Theory/Lab/	Embed	ded The	eory and	d Lab											
OBJECTIVES:															
 To provide a foun 	dation i	in datab	ase sec	urity											
 Understand the va 	rious d	atabase	vulner	abilities	8										
 Learn to audit the 	databas	ses.													
COURSE OUTCOMES															
CO1	Able t	to defin	e the fu	ındame	ntals of	securit	y proce	ess.							
CO2	Disco	ver the	differe	nce data	abase p	erspect	ive and	l vulne	erabil	lities i	in op	erati	ing sy	stem	· <u></u>
CO3	Descr	ibe the	security	y polici	es and	techniq	ues								
CO4						Applica		Secur	ity M	Iodel	s				
CO5						ct in rea			_						
Mapping of Course Outo	comes v	vith Pr	ogram	Outco	mes (P	Os)		•							-
COs/POs	PO1	PO2	PO3		PO5	PO6	PO7	PO8]	PO9	PO	10	PO1	1 P	O12
CO1	3	2	1	2	3	3	1	2		3	2	2	3		1
CO2	3	2	3	2	3	3	2	2		3	2	2	3		2
CO3	3	2	2	2	3	3	2	2		3	2	2	3		2
CO4	3	3	3	2	3	3	1	2		3	2	2	3		2
CO5	3	3	2	2	3	3	2	2		3	2	2	3		2
COs / PSOs		PSO1			PSO2	I.		PS(D3				PS()4	
CO1		2			3			3					3		
CO2		2			3			3					3		
CO3		2			3			3					3		
CO4		3			3			3					3		
CO5		3			3			3					2		
3/2/1 indicates Strength	of Corr	elation	3- H	ligh, 2-	Mediu	m, 1-L	ow								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills						
					✓										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18E16 / BCS20E16	DATABASE SECURITY	Ту	3	0/0	0/0	3

UNIT I Security Architecture & Operating System Security Fundamentals 9 Hrs

Security Architecture: Introduction-Information Systems- Database Management Systems-Information Security Architecture- Database Security-Asset Types and value-Security Methods Operating System Security Fundamentals: Introduction-Operating System Overview-Security Environment – Components- Authentication Methods-User Administration-Password Policies-Vulnerabilities-E-mail Security.

UNIT II Administration of Users, Profiles, Password Policies, Privileges and Roles 9 Hrs

Administration of Users: Introduction-Authentication-Creating Users, SQL Server User-Removing, Modifying Users-Default, Remote Users-Database Links-Linked Servers-Remote Servers-Practices for Administrators and Managers-Best Practices Profiles, Password Policies, Privileges and Roles: Introduction-Defining and Using Profiles-Designing and Implementing Password Policies-Granting and Revoking User Privileges-Creating, Assigning and Revoking User Roles-Best Practices.

UNIT III Database Application Security Models

9 Hrs

Introduction-Types of Users-Security Models: Access Matrix model, Access mode model- Application Types: Client/Server Applications, Web Applications, Data ware house applications- Application Security Models-Data Encryption.

UNIT IV Virtual Private Databases

9 Hrs

Virtual Private Databases: Introduction-Overview of VPD-Implementation of VPD using Views, Application Context in Oracle-Implementing Oracle VPD-Viewing VPD Policies and Application contexts using Data Dictionary, Policy Manager Implementing Row and Column level Security with SQL Server.

UNIT V Security and Auditing Project Cases

9 Hrs

Case Studies: Developing an online database, payroll management, tracking database changes, developing a secured authorization repository.

Total Hours: 45

TEXT BOOK:

1. Hassan A. Afyouni, 2009 "Database Security and Auditing", Third Edition, Cengage Learning.

- 1. Charu C. Aggarwal, Philip S Yu, 2008, "Privacy Preserving Data Mining": Models and Algorithms, Kluwer Academic Publishers.
- 2. Ron Ben Natan, 2005, "Implementing Database Security and Auditing", Elsevier Digital Press.

Subject Code:	Subje	ct Nam	e :						Ту	7/		-	.,		T
	3			EO AN	ALYT	ICS			Lb	o /	L	T S.I		P/R	C
BCS20E01									ET						
		quisite:							Ţ		3	0/	0	0/0	3
L: Lecture T:							Project	R : R	esearc	ch C: (Credi	its			
Ty/Lb/ETL : T	•	_ab/Em	bedded	Theory	and L	ab									
OBJECTIVES		1	1.6	. 1 .	1										
• To und					•		-141								
To undTo und								retem							
• To und															
COURSE OU					ations	or vide	o anary	ucs							
CO1			o analy		orithm	e for e	ecurity	z annli	icatio	ne					
CO2)		o analy												
CO2												1	liant:		
			om ma								get	appl	ncatio	I1	
CO4			o analy												
CO5			o analy						d Tra	ittic N	loni	torii	ng		
Mapping of Co												4.0	=0.1		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	,	PO9	PO		PO11	l P	012
CO1	3	2	1	2	3	3	1	2		3	2		3		1
CO2	3	2	3	2	3	3	2	2		3	2		3		2
CO3	3	2	2	2	3	3	2	2		3	2		3		2
CO4	3	3	3	2	3	3	1	2		3	2		3		2
CO5	3	3	2	2	3	3	2	2	02	3	2	<u>'</u>	3		2
COs / PSOs		PSO1			PSO2			PS					PSO	94	
CO1		2			3			3					3		
CO2		2			3				3				3		
CO3		2			3			3					3		
CO4		3			3				3				3		
CO5	G4	3	, ,	4• /	3	2.14	1.	1.1					2		
3/2/1 indicates	Streng	gth of C	orrela	tion .	3- High	ı, 2- M(edium,		W						
								Skill							ļ
			ਬ												ļ
		ses	Social					nic							
>		ien	Š		/es		ç	chi							
yor	es	Sci	and	ခွ	ctiv	'es	oje.	Te							
Category	enc	ng	es s	Ç	Ele	cti	/ Pı	/ sc	S						
Ç	Sci	eri	niti es	m (_ m	El e	al,	shij	ill						
	ic	 zine	Humanities and Sciences	gra	gra	en l	ctic	3rns	t SI						
	Basic Sciences	Engineering Sciences	Humanit Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills						
					√										
					V										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS20E01	VIDEO ANALYTICS	Ту	3	0/0	0/0	3

UNIT I Introduction 9Hi

Image Processing ,Computer Vision, Spatial/ Frequency Domain Processing , Background Modeling, Local Features (Harris/SIFT/KB/STIP) , Object Detection and Recognition (Eigen Faces, Sparse Representation) , Face Detection and Recognition

UNIT II Foreground Extraction:

9Hrs

Background estimation- Averaging- Gaussian Mixture Model- Optical Flow based- Image Segmentation- Region growing-Region splitting-Morphological operations- erosion-DilationTracking in a multiple camera environment

UNIT III Classifiers:

Neural networks (back propagation) – Deep learning networks- Fuzzy Classifier- Bayesian classifier-HMM based classifier UNIT IV

9Hrs

Kalman, Particle Filter based tracking, Multi-target/Multi-camera tracking, Motion Estimation, Action Recognition, Stereo and MonoDepth Estimation, Decision Trees/Random Forest

UNIT V 9Hrs

Video Analytics for Business Intelligence and Traffic Monitiring and Assistance Customer behavior analysis – people counting- Traffic rule violation detection- traffic congestion identification for route planning- driver assistance- lane change warning

Total Hours: 45

TEXT BOOK:

- 1. Graeme A. Jones (Editor), Nikos Paragios (Editor), Carlo S. Regazzoni (Editor) Video-Based Surveillance Systems: Computer Vision and Distributed Processing, Kluwer academic publisher, 2001
- 2. Nilanjan Dey (Editor), Amira Ashour (Editor) and Suvojit Acharjee (Editor), Applied Video Processing in Surveillance and Monitoring Systems (IGI global) 2016
- 3. Zhihao Chen (Author), Ye Yang (Author), Jingyu Xue (Author), Liping Ye (Author), Feng Guo (Author), The Next Generation of Video Surveillance and Video Analytics: The Unified Intelligent Video Analytics Suite, CreateSpace Independent Publishing Platform, 2014

- 1. Computer Vision: Algorithms and Applications, by Richard Szeliski. A free electronic copy is available online (Link)
- 2. Introductory techniques for 3-D Computer Vision, by Emanuele Trucco and Alessandro Verri
- 3. Multiple View Geometry in Computer Vision (2nd edition) by Richard hartley and Andrew Zisserman
- 4. Computer Vision: A Modern Approach by David Forsyth and Jean Ponce
- 5. Digital Image Processing (Rafael Gonzalez and Richard Woods)
- 6. Caifeng Shan (Editor), Fatih Porikli (Editor), Tao Xiang (Editor), Shaogang Gong (Editor) Video Analytics for Business Intelligence, Springer, 2012

Subject Code: BCS18E34/BCS20E34	Subje	ect Nan Ma		RAME	COMF	PUTIN	G		Ty/ Lb/ ETI	/	L	T/ S.Lı	r P	R	С
	Prerec	quisite:	BCS18	3004					Ty	,	3	0/0	0/	0	3
	S.Lr : \$			_	P : Proj	ect R:	Resear	rch C:	Credi	its					
T/L/ETL: Theory/Lab/E	mbedde	d Theo	ry and l	Lab											
OBJECTIVE:															
 To understand the 					AM an	d IDCA	AMS								
 To study the deta 															
 To understand CI 	CS and	l supply	transa	ctions											
COURSE OUTCOMES	(COs)	: (3-5	5)												
CO1	Under	rstand t	he conc	epts of	MVS,	JCL, V	SAM a	nd ID	CAM	S					
CO2				_	COBO										
CO3	Under	rstand (CICS ar	nd supp	ly trans	actions									
CO4					databas										
CO5					hm for		_	ance							
Mapping of Course Out															
COs/POs	PO1		PO3			PO6	PO7	PO8	F	PO9	PO1	10 1	PO11	PC)12
CO1	3	3	3	2	3	2	2	3		2	3		2	,	2
CO2	3	3	3	1	3	2	1	2		2	3		2	,	2
CO3	3	3	2	1	3	2	1	1		2	3		2	,	2
CO4	3	3	2	1	3	2	1	1		2	3		2	,	3
CO5	3	3	2	1	3	1	1	1		2	3		2	,	3
COs / PSOs		PSO1			PSO ₂			PSC	03				PSO ₄		
CO1		3			2			3					2		
CO2		3			2			2	,				2		
CO3		3			2			2	,				3		
CO4		3			2			3					3		
CO5		2			1			3					3		
3/2/1 indicates strength	of corr	elation	3 – H	ligh, 2	– Medi	um, 1	- Low								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
					✓										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18E34/ BCS20E34	MAINFRAME COMPUTING	Ту	3	0/0	0/0	3

UNIT I MVS Concepts

9 Hrs

Main frame in Todays Business -Introduction to Z series H/W , Z/OS .- MVS overview-system initialization-storage management-job management ISPF Editor ISPF Data Utility Functions -managing work-data management-I/O processing-termination and recovery. TSO commands-general syntax of JCL statements

UNIT II JCL and VSAM

9 Hrs

Explanation of job statements-explanation of EXEC statements-explanation of DD statements-additional parameters on JOB, EXEC, DD statements-classification-instream and catalog procedures-utilities-abend codes. VSAM data set organization structure-IDCAMS commands-JCL for VSAM-buffering-alternative index-repro-backup and recovery-export and import.

UNIT III COBOL/370 9Hrs

Structured programming constructs-fundamentals of COBOL-data definition-conditional statements-perform statements-compiler option-table definition-COBOL call and parameter passing-file handling.

UNIT IV DB2 9Hrs

RDBMS concepts-structural query language-normalisation-DB2 architecture-DB2 objects-locks-program preparation-cursors-null indicators-optimisation - utilities.

UNIT V CICS 9Hrs

CICS introduction-terminal control-application house keeping-EXEC,interface locks-supply transactions — CESM,CESF,CEMT,CEDF-NMDS-BMS-abend codes-file control-program control-TSQ-TDQ-pseudo conversation-recovery and roll back.

Total Hours: 45

TEXT BOOKS:

- 1. Mike Ebbers, John Kettner, Wayne O'Brien, Bill Ogden, (2011) Introduction to the New Mainframe: z/OSBasics, IBM Redbooks (SG24-6366-01)
- 2. Alexis Leon, IBM Mainframe Handbook, vikas Publishing, 2014

REFERNCE BOOKS:

- 1. M.K. Roy and D.GoshDastidar, (2006) COBOL PROGRAMMING, John Wiley And Sons
- 2. Stern & Stern (2007) STRUCTURED COBOL PROGRAMMING, (8th ed.), JOHN Wiley India
- 3. Grant Allen(2008) Beginning DB2: from Novice to Professional, Apress
- 4. Mary Lovelace, Jose Dovidauskas, Alvaro Salo, Valerio Sokai, (2012) VSAM Demystified (SG246105)IBM Red Books
- 5. Doug Lowe ,(1994) MVS JCL,(2nd ed.),MIKE MURACH ASSOCIATE

Saba Zamir, ChandanRanade, (2007) MVS JCLPrimer, McGrawhil

Subject Code: BCS18E35/	Subjec	t Name N	: EURO	FUZZY	COMP	PUTING			Ty Lb ET)/	L	T/ S.Lr	P/R	C
BCS20E35	Prerequ	iisite: B	CS18E0	5					Ty	y	3	0/0	0/0	3
L : Lecture T : Tutoria	1 S.Lr :	Supervi	ised Lear	rning P	: Project	R : Res	search C	Credit	s		•		•	•
Ty/Lb/ETL: Theory/L	ab/Embe	edded Th	neory and	d Lab										
OBJECTIVE:														
 The students w 	vill be ab	le to des	ign and	develop	neuro fu	izzy mod	leling an	d will h	nave tl	he abi	lity to 1	underst	and Ne	ural
Network.														
COURSE OUTCOM	,	, ,	,											
CO1	Identif	y and d	escribe	fuzzy a	nd soft	computi	ing tech	niques	and a	also tl	neir us	e in sc	me rea	ıl
	life sit	uations												
CO1	T1	41	1. 1		1	41	. 41 :							
CO2			roblems				s technic	ques.						
CO3	Discus	s about	regress	10n and	optimiz	zation								
CO4	Heing	differer	nt fuzzy	logic te	chnique	es find a	solutio	n						
	Using		zy	nogic ic	que	a iiiu a	. 5014110	11						
CO5	Analys	se about	the neu	ıral netv	work ha	rdware								
M	<u> </u>	'41 P		O 4	(PO	-)								
Mapping of Course C					, ,	-	DO5	DOG		DOA	DO16) DO	11 D	010
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10			O12
CO1	3	3	2	3	3	2	3	3		2	1	3		3
CO2	3	3	2	3	3	2	3	3		2	2	3		3
CO3	3	3	2	3	2 2	2 2	2	3		2	2	2		3
CO4	3	3	3	2	2	2	2 2	3		3	2	3		3
CO5 COs / PSOs	3	PSO1	3	2	PSO2		2	PS()2	3				3
												P	SO4	
CO1		3			3			2					3	
CO2		3			2			3					3	
CO3		3			3			2					3	
CO4		3		-	3			3					3	
CO5	41a a.P :	3	. 2 11	lah 2 1		. 1 T		2					3	
3/2/1 indicates streng	ın of cor	relation	I 3 – Hi	ign, 2 – 1	viedium	1, 1 – L()W			ı				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	1		1]	✓									

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS18E35/ BCS20E35	NEURO FUZZY COMPUTING	Ту	3	0/0	0/0	3

UNIT I Neuro – Fuzzy and Soft Computing Fuzzy Systems

9 Hrs

Introduction to Fuzzy Sets – Fuzzy Rules and - - Fuzzy Reasoning and - Inference-Fuzzy Inference Systems - Compositional Rules of Inference in Fuzzy System – Defuzzification Strategies , Fuzzy Models– System Identification – Several Least Square Methods – Optimization Techniques- Derivative-based Optimization, Derivative and Free Optimization.

UNIT II Regression and Optimization

9 Hrs

System Identification – Several Least Square Methods – Optimization Techniques- Derivative-based and Derivative Free Optimization.

UNIT III Neural Network

9 Hrs

Neural Network Architecture -Network Inputs and Outputs – Feed back Inter Connections and Network Stability – Feed Forward Networks –Back Propagation Networks- Learning Methods- Adaptive Networks – Supervised Learning Neural Networks –RBFN – Unsupervised Learning Networks - Self Organizing maps, Adaptive Resonance Architectures, Radial Basis Networks- LVQM , Principle Component Anlaysis.

UNIT IV Neuro Fuzzy Modelling

9 Hrs

Neural Component of a Fuzzy System – Fuzzy neural Network Controllers – Adaptive Neuro Fuzzy Inference System(ANFIS) – CANFIS – Neural Networks based Fuzzy Inference System - Classification and Regression Tests – Data Clustering Techniques and Algorithms – Rule base Structure Identification

UNIT V Artificial Neural Networks Hardware

9 Hrs

Implementation Issues – Evaluation of Neural network Architectures – Hardware Realization – VLSI approach – Optical techniques.

Total Hours: 45

TEXT BOOK:

1. Jyh-shing roger Jang, Chnesy-tasi sur, Eiji Miziltazui," Neuro and Soft Computing: A Computational Approach to Learning and machine Intelligence", Pearson Education 2004, Digitized in 2007 ISBN 0132610663, 9780132610667

- 1. Timothy J.rass (2011), "Fuzzy Logic with Engineering Application", (3rd ed.)Wiley India,
- 2. S.Rajasekaran , G.A.Vijayalakshmi Pai , Neural N/Ws, Fuzzy Logic and Genetic Algorithm Sysnthesis and Applications, PHI (2004)

Ty/

Subject Code:

Subject Name:

BCS20E02	Buojo		AND	CYBE	R SEC	URITY	Z .		Lb ET	/	L	T/ S.Lr	P /.	R	C
	Prerec	quisite:	BCS18	004					Ty	7	3	0/0	0/	0	3
L : Lecture T :	Tutoria	1 S.L	r : Supe	rvised	Learnin	g P:F	roject	R : R	esearc	h C: 0	Credits	S			
Ty/Lb/ETL : Tl	heory/L	ab/Em	bedded	Theory	and La	ab									
OBJECTIVES	5:														
 To fam 						ks and o	cyber-ci	rimes							
To give															
• To stud	dy the o	defensi	ve techr	niques a	against	these at	ttacks								
COURSE OUT	ГСОМ	ES (C	\overline{Os}):(3	B- 5)											
CO1	Illustr	ate diff	erent ty	pes of	cyber s	ecurity	attacks	and o	crimes	3					
CO2	Abilit	y to inf	erence	the kno	wledge	cyber	law								
CO3	Discu	ss the t	echniqu	es used	l for att	acks									
CO4			proble												
CO5	Learn	s how a	rtificia	lintelli	gence s	upport	expert s	systen	ıs						
Mapping of Co															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	I	PO9	PO1	0 PC)11	PO	12
CO1	3	2	1	2	3	3	1	2		3	2		3	1	
CO2	3	2	3	2	3	3	2	2		3	2		3	2	2
CO3	3	2	2	2	3	3	2	2		3	2		3	2	2
CO4	3	3	3	2	3	3	1	2		3	2		3	2	2
CO5	3	3	2	2	3	3	2	2		3	2		3	2	2
COs / PSOs		PSO1			PSO2				О3			P	SO4		
CO1		2			3			3					3		
CO2		2			3			3					3		
CO3		2			3			3					3		
CO4		3			3			3					3		
CO5		3	-		3			3	-				2		
3/2/1 indicates	Streng	th of (Correla	tion 3	3- High	, 2- Me	edium,		V			<u> </u>	-		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
					✓										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS20E02	AI AND CYBER SECURITY	Ту	3	0/0	0/0	3

UNIT - I Introduction to Cyber Security:

9 Hrs

Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Spectrum of attacks, Taxonomy of various attacks, IP spoofing, Methods of defense, Security Models, risk management, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy.

UNIT - II Cyberspace and the Law & Cyber Forensics:

9 Hrs

Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy. Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics, Special Techniques for Forensics Auditing.

UNIT - III Cybercrime in Mobile and Wireless Devices:

9 Hrs

Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies and Measures in Mobile Computing Era, Laptops

UNIT - IV Learning:

9 Hrs

What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem Solving, Learning from Examples, Winston's Learning Program, Decision Trees.

UNIT - V Expert Systems:

9 Hrs Representing and

Using Domain Knowledge, Shell, Explanation, Knowledge Acquisition.

Total Hours: 45

TEXT BOOKS:

- Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley 2018
- 2. B. B. Gupta, D. P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.
- 3.Russell, S. and Norvig, P, Artificial Intelligence: A Modern Approach, Third Edition, PrenticeHall, 2010.

Subject Code: Subject Name:

Subject Code:	Subje	ct Nam							Ty/			T /			
- aa.a		B	USINE	SS INT	ELLI	GENCI	E		Lb/		L	S.Lr	P /1	R	C
BCS20E03									ETL	,		S.LI			
		quisite:							Ty		3	0/0	0/0	0	3
L : Lecture T :							Project	R : R	esearch	C: 0	Credit	S			
Ty/Lb/ETL: T		_ab/Em	bedded	Theory	and L	ab									
OBJECTIVES															
• Be exp							_	-	stem						
			ling asp												
• underst						-			ques us	sed in	n it				
			erent d		lysis to	ols and	technic	lues							
COURSE OU'					-4-14	C 1:		. 11:							
CO1			the fur						nce.						
CO2			ta mini					ice.							
CO3			arious												
CO4			the dat							ges.					
CO5		_	the em						tion						
Mapping of Co													-		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		09	PO1	_	D11	PO ₁	.2
CO1	3	2	1	2	3	3	1	2		3	2		3	1	
CO2	3	2	3	2	3	3	2	2		3	2		3	2	
CO3	3	2	2	2	3	3	2	2		3	2		3	2	
CO4	3	3	3	2	3	3	1	2		3	2		3	2	
CO5	3	3	2	2	3	3	2	2		3	2		3	2	
COs / PSOs		PSO1			PSO2			PS	O3			P	SO4		
CO1		2			3			3	3				3		
CO2		2			3				3				3		
CO3		2			3				3				3		
CO4		3			3			3					3		
CO5		3			3				3				2		
3/2/1 indicates	Streng	gth of (Correla	tion 3	3- High	1, 2- M	edium,		W			-	1		
								kill							
			- F					ıl S							
		ses	Ci					nice							
		enc	Š		es/		ç	chr							
OITY	es	Sci	pun	رو	ctiv	es	oje	Te							
.eg	enc	ng	es :	Coı	Ele	ctiv	/ Pr	/ sc	S						
Category	Sci	eri:	niti es) H	[m]	Ele	al,	ship	kill						
-	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	gra	Program Electives	Open Electives	Practical / Project	Internships / Technical S	t SI						
	Bas	Eng	Hui Scie	Program Core	Pro	Ope	Pra	Inte	Soft Skills						
						ĺ			- 4						
					✓										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BCS20E03	BUSINESS INTELLIGENCE	Ty	3	0/0	0/0	3

UNIT I BUSINESS INTELLIGENCE

9 Hrs

Effective and timely decisions – Data, information and knowledge – Role of mathematical models – Business intelligence architectures: Cycle of a business intelligence analysis – Enabling factors in business intelligence projects – Development of a business intelligence system – Ethics and business intelligence.

UNIT II KNOWLEDGE DELIVERY

9 Hrs

The business intelligence user types, Standard reports, Interactive Analysis and Ad Hoc Querying, Parameterized Reports and Self-Service Reporting, dimensional analysis, Alerts/Notifications, Visualization: Charts, Graphs, Widgets, Scorecards and Dashboards, Geographic Visualization, Integrated Analytics, Considerations: Optimizing the Presentation for the Right Message.

UNIT III EFFICIENCY

9 Hrs

Efficiency measures – The CCR model: Definition of target objectives- Peer groups – Identification of good operating practices; cross efficiency analysis – virtual inputs and outputs – Other models. Pattern matching – cluster analysis, outlier analysis

UNIT IV BUSINESS INTELLIGENCE APPLICATIONS

9 Hrs

Marketing models – Logistic and Production models – Case studies.

UNIT V FUTURE OF BUSINESS INTELLIGENCE

9 Hrs

Future of business intelligence – Emerging Technologies, Machine Learning, Predicting the Future, BI Search & Text Analytics – Advanced Visualization – Rich Report, Future beyond Technology.

Total Hours: 45

TEXT BOOK:

- 1. Efraim Turban, Ramesh Sharda, Dursun Delen, "Decision Support and Business Intelligence Systems", 9 th Edition, Pearson 2013.
- 2. Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle of Decision Making", Addison Wesley, 2003.
- 3. Carlo Vercellis, "Business Intelligence: Data Mining and Optimization for Decision Making", Wiley Publications, 2009.
- 4. David Loshin Morgan, Kaufman, "Business Intelligence: The Savvy Manager"s Guide", Second Edition, 2012.
- 5. Cindi Howson, "Successful Business Intelligence: Secrets to Making BI a Killer App", McGraw-Hill, 2007.
- 6. Ralph Kimball , Margy Ross , Warren Thornthwaite, Joy Mundy, Bob Becker, "The Data Warehouse Lifecycle Toolkit", Wiley Publication Inc., 2007

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code: BCS18E39/ BCS20E39	J		REAL		SYST	EMS			Ty Lt ET)/	L	T/ S.Lr	P /.	R C
	Prerec	quisite:	BCS18	3006					T	y	3	0/0	0/	0 3
L: Lecture T: Tutorial S.Lr:	Superv	ised Le	earning	P:Pro	oject R	: Resea	rch C:	Credi	ts					
T/L/ETL: Theory/Lab/Embedd	led The	ory and	Lab											
OBJECTIVE :														
Real-time scheduling as	nd sche	dulabili	ity anal	ysis										
 Formal specification and 	ıd verifi	cation	of timir	ng cons	traints a	and pro	perties							
 Design methods for rea 		•												
 Development and imple 	ementat	ion of 1	new tec	hniques	s to adv	ance th	e state-	of-the	e-art re	al-time	syste	ns rese	earch	
COURSE OUTCOMES (COS	s):(3-	5)												
CO1	Recal	l the ba	sic con	cepts of	f operat	ing sys	tem							
CO2	Illustr	ate var	ious tas	k assig	nment a	and sch	eduling	algor	rithms				· <u> </u>	
CO3	Apply	the kn	owledg	e of pro	ogramn	ning lan	guages	and t	ools fo	r real ti	ime sy	stems		
CO4			problen											
CO5	Identi	fy the s	olution	to the	comput	ing pro	blems							
Mapping of Course Outcomes		•												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO8	PO9	PO ₁	0 PC)11	PO12
CO1	3	3	1	1	1	1	1		1	1	2		2	2
CO2	3	3	2	3	1	1	2		1	2	2		2	2
CO3	3	3	2	3	3	1	2		1	2	1		2	3
CO4	3	3	3	3	2	1	2		1	2	1		2	3
CO5	3	3	3	3	3	1	2		1	2	1		2	3
COs / PSOs		PSO1			PSO ₂			P	SO3			P	SO4	
CO1		3			3				2				1	
CO2		3			3				2				2	
CO3		3			3				3				2	
CO4		3			3				3				2	
CO5		3			3				3				2	
3/2/1 indicates strength of cor	relatio	n 3-1	High, 2	– Med	lium, 1	l – Low	7							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills					
					✓									

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BCS18E39/ BCS20E39	REAL TIME SYSTEMS	Ту	3	0/0	0/0	3

UNIT I Introduction

9 Hrs

Architecture of real time systems/embedded systems-operating systems issues-performance measures-estimating program run times.

UNIT II Task Assignment and Scheduling

9 Hrs

Uniprocessor scheduling-IRIS tasks-task assignment algorithms- mode changes -fault tolerance scheduling.

UNIT III Programming Languages and Tools

9 Hrs

Desired characteristics based on ADA-data typing-control structures-packages-exception handling-overloading-multitasking-timing specification-task scheduling-just in time compilation-run time support.

UNIT IV Real Time Databases

9 Hrs

Basic definitions-main memory databases -transaction processing-concurrency control-disk scheduling algorithms-serialization and consistency-real time communication

UNIT V Fault Tolerance, Reliability and Synchornization

9 Hrs

Fault types-fault detection and containment-redundancy-data diversity-reversal checks-obtaining parameter values-reliability models for hardware redundancy-software error models-clocks-fault tolerance synchronization-synchronization and software.

Total Hours: 45

TEXT BOOK:

1. C.M.Krishna, Kang.G.Shin, 2010, Realtime Systems, McGraw Hill.

- 1. Rajib Mall, 2007 "Real-time systems: theory and practice", Pearson Education.
- 2. Phillip A.Laplante 2011 Real Time System Design and Analysis,4 th edition, Wiley.
- 3. Alan burns and andy wellings, 2009 "Real time systems and prog. Languages", 4 thedition, pearson.

Subject Code:	Subject	Name:								'y/ .b/	L		Γ/	P/R	C
BCS18E40/]	DISTRI	BUTED	COMPU	JTING				rL	L	S.	Lr	1/1	
BCS20E40	Prerequ	isite: Bľ	T18I01 &	& BCS18	3006]	Гу	3	0,	/0	0/0	3
L: Lecture T: T	utorial	S.Lr : S	upervised	d Learnii	ng P:Pr	oject R	Researc	h C: C	redits	<u> </u>		•			
Ty/Lb/ETL: The	eory/Lab	/Embedo	ded Theo	ry and L	ab										
OBJECTIVE:															
					the desi	-		system	S						
				•	ts of distr	•									
				ment des	ign of di	stributed	systems	to desi	ign a	new me	emor	У			
COURSE OUT															
CO1					ted comp										
CO2					oncepts o										
CO3					ng the me		anageme	nt desig	gn of	distrib	uted s	systen	1S		
CO4					stem sec										
CO5			•		outed file	•									
Mapping of Co				1				ı							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO	D10	PO1	1 P	O12
CO1	2	2	2	3	2	3	3	3		3		3	2		3
CO2	2	3	2	3	3	2	3	3		3		3	3		3
CO3	3	3	3	2	3	3	3	3		3		3	3		3
CO4	3	3	3	3	2	3	3	3		3		3	3		3
CO5	1	1	3	3	3	3	3	3		3		3	3		3
COs / PSOs		PSO1			PSO2			PS	O3				PS	04	
CO1		2			3			3	3				2	2	
CO2		2			3			2	2				2	2	
CO3		3			3			3	3				3	3	
CO4		3			3			2	2				3	3	
CO5		2			2			3	3				3	3	
3/2/1 indicates s	strength	of corre	lation 3	3 – High	, 2 – Med	dium, 1	- Low								
								Skill							
		s	Social					ica							
		suc	So		Se		#	hn							
77	SS	Scie	pu	4)	tiv	Se) jec	Тес							
Category	nce	gi gi	s a	Ore		tiv	Pro	s / s							
Zate	cie	erir	iitie 3S	пС	 m E	lec	al /	hip	ills						
J	ic S	ine	nce	grai	 grai	n E	tic	rns	Sk						
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills						
	<u> </u>	Щ	T S	1	1 11		1	П	<u>\S_2</u>						
					✓										

SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ET	L	T/ S.Lr	P/R	C
BCS18E40/ BCS20E40	DISTRIBUTED COMPUTING	Ту	3	0/0	0/0	3

UNIT I Fundamentals 9 Hrs

Introduction to distributed computing system, Evolution, Different models, Gaining popularity, Definition, Issues in design, DCE, Message passing-Introduction, Desirable features of a good message passing system, Issues in IPC, Synchronization, Buffering, Multidatagram, Process addressing, Failure handling, Group communication.

UNIT II Remote Procedure Call

9 Hrs

Introduction, RPC model, transparency of RPC, Implementing RPC mechanism, Stub generation, RPC messages, Marshalling arguments and results, Sever management, parameter-passing semantics, Call semantics, Communication protocols for RPCs, Complicated RPC, Client-server binding, exceptional handling, security, Lightweight RPC.

UNIT III Distributed Shared Memory and Synchronization

9 Hrs

Introduction, General architecture of DSM systems, Design and implementation issues of DSM, Granularity, Structure of shared memory space, Consistency model, Replacement strategy, Thrashing, Different approaches to DSM, Advantages of DSM, Clock synchronization, Event ordering, Mutual exclusion, Deadlock, Election algorithm.

UNIT IV Resource and Process Management

9 Hrs

Introduction, Desirable features of a good global scheduling algorithm, Task assignment approach, Load balancing approach, Load sharing approach, Process migration, Threads.

UNIT V DFS/DCE Security

9 Hrs

Desirable features of good DFS, File models, File accessing, models, File sharing semantics, File cachingschemes, File replication, Fault tolerance, Atomic Transaction, Design principles, Authentication, Access control, Digital signatures, DCE security service.

Total Hours: 45

TEXT BOOK:

1. Pradeep K. Sinha (2012 Reprint), Distributed Operating System Concepts and Design PHI

- 1. Andrew S. Tenenbaum (2012), Modern Operating System (3rd ed.) PHI
- 2. Ajay D. Kshemkalyani , Mukesh Singhal (2008), Distributed computing : principles, algorithms and systems Cambridge University Press
- 3. Andrew S. Tenenbaum & Maatren Vansteen (2012) Distributed systems: Principles & Paradigms (2nd ed.), PHI
- 4. Hagit Attiya And Jennifer Welch (2004) Distributed computing fundamentals, simulations and Advanced Topics (Digitized in 2007) (2nd ed.), Wiley
- 5. Jean Dollimore, Tim Kindberg, And George Coulouris (2005) Distributed Systems: Concepts and Design (4th ed.) Pearson Education

Open Electives

Subject Code: BCS18OE1/ BCS20OE1	Subjec	ct Name CYI			Y & FO		CS		L	Sy/ lb/ TL	L	T S.I		P/R	C
	Prereq	uisite: (Compute	r Netwo	ork, Soft	ware Q	uality			Гу	3	0/	0	0/0	3
L : Lecture T : Tutoria				_	Project	R : Rese	arch C: 0	Credits	5				•		
T/L/ETL: Theory/Lab	/Embedde	ed Theor	y and La	ıb											
OBJECTIVE:															
	rn the Bas														
	derstand														
	ility to wo			vidence,	informa	tion coll	ection ar	nd info	rmat	ion pro	otecti	on.			
COURSE OUTCOM					C 1	. 1									
CO1					fundame				•	1 . 1					
CO2					nfrastruc				•						
CO3			ty to insp	ect with	the digi	tal evide	ence, info	ormatio	on co	llectio	n and	d info	ormati	on	
CO.4	protect		1 6	•	.•										
CO4					reventio	ons									
CO5		oly inform													
Mapping of Course O COs/POs	PO1	PO2		PO4	PO5	PO6	DO7	PO	Q	DOO	DC)10	PO1	1 10	012
COS/POS CO1	3	PO2 2	PO3	1 1	1 1	1	PO7	1 PU	0	PO9)10 2	1	L P	O12 2
CO2	3	3	2	2	2		1	1		2		2	2		3
	3	3			2	1		_		2		3			3
CO3			3	2		1	1	2					3		
CO4	3	2	2	2	2	2	2	2		1		3	1		3
CO5	3	3 DCO1	3	2	DCO2	2	2	3		3	;	3	2	<u> </u>	3
COs / PSOs		PSO1			PSO2			PSO	<u>J3</u>				PS()4	
CO1		3			3			2					1		
CO2		3			2			1					1		
CO4		3			$\frac{2}{2}$			1					1		
CO5	+	3			1			1					1		
3/2/1 indicates streng	h of corr	_	3 _ Hio	h 2 – M	1 Tedium	1 _ I os	<u> </u> 	1					1		
JI III IIII Cates sti elig	1 01 (011	CIACIOII	<i>3</i> – 111 <u>2</u>	,11, <i>2</i> – 10.		1 – LU	<u>, </u>								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
						√									

Course Code	Course Title	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BCS18OE1/ BCS20OE1	CYBER SECURITY & FORENSICS	Ту	3	0/0	0/0	3

UNIT I Introduction to Cyber Crime

9 Hrs

Overview, what is Cybercrime?, Computer Intrusions and Attacks (Unauthorized Access) Computer Viruses, Time Bombs, Trojans, Malicious Code (Malware), Online Fraud and Identity Theft; Intellectual Property Theft; Virtual Crime, Online Vice: Gambling; Pornography; Child Exploitation, International Aspects and Jurisdiction

UNIT II Information security

9 Hrs

Infrastructure and Information Security; Risk Management

UNIT III: Instigation and digital evidence

9 Hrs

Investigating Cybercrime: Digital Evidence and Computer Forensics, Interception, Search and Seizure, and Surveillance

UNIT IV Information Welfare

9 Hrs

Information Warfare, Cyber terrorism, and Hacktivism, Terrorism, Radicalization, and The War of Ideas, Trade Secret Theft and Economic Espionage, National Security.

UNIT V Data Prevention 9 Hrs

Desktop Security, Data and file Security, Network resources Security, Firewall, Mobile data Security.

Total Hours: 45

Text Books

- David J. Loundy, COMPUTER CRIME, INFORMATION WARFARE, AND ECONOMIC ESPIONAGE, Carolina Academic Press (2003) (ISBN:0890891109).
- 2. Jack Balkin, et al. eds., CYBERCRIME: Digital Cops in a Networked World (NYU Press 2007) (ISBN:0814799833).

Reference books

- 1. Hacking for Dummies by by Kevin Beaver Published by Wiley Publishing, Inc. 2004
- 2. Kenneth C.Brancik "Insider Computer Fraud" Auerbach Publications Taylor & Francis Group-2008.
- 3. AnkitFadia "Ethical Hacking" second edition Macmillan India Ltd, 2006
- 4. Live Hacking: The Ultimate Guide to Hacking Techniques & Countermeasures for Ethical Hackers & IT Security Experts... by Ali Jahangiri (Oct 21, 2009)
- 5. Ethical hacking countermeasures An Ultimate Guide For Ethical Hackers [Paperback]Mr. Lomeaskeshkumar (Author), September 1, 2014.

Subject Code: BCS18OE2/	J		FICIAI EXI	PERT S	ELLIGI SYSTE	² M			Ty Lk ET)/		T/ Lr	P/R	C
BCS20OE2			Linear heory.	r algeb	ra, Cal	culus, l	Basic		T	y	3	0/0	0/0	3
L : Lecture T : T/L/ETL : The	Tutoria	ıl S.L	r : Supe			_	Project	R : Re	esear	ch C:	Credits			<u> </u>
OBJECTIVE														
• Stu	udy the	concep	ts of A	rtificial	Intellig	gence.								
• Le	arn the	method	ds of so	lving p	roblems	s using	Artifici	al Inte	ellige	nce.				
• Int	roduce	the cor	ncepts o	of Exper	rt Syste	ms and	machir	ne lear	ning					
COURSE OU	TCOM	IES (C	Os):(3	3- 5)										
CO1	Illustr	ate diff	erent ty	pes of a	AI ager	nts								
CO2	Classi	fy vario	ous AI s	search a	algorith	ms(uni	nforme	d, info	rmec	and A	A∗ Heu	ristic	<u> </u>	
CO3	Discus	ss on t	he fun	dament	als of	knowle	edge in	ference	e on	Forv	vard ,	Back	ward	chaining
			d Bayes				υ				,			0
CO4					anning	related	to state	space	sear	ch and	d partia	l ord	er plan	ning
CO5					arious e								•	
Mapping of C				_		_								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10]	PO11	PO12
CO1	1	3	1	1	1	1	1	1		1	1		1	3
CO2	3	3	1	1	3	3	2	1		3	2		1	3
CO3	2	3	2	2	3	2	1	1		3	3		1	3
CO4	3	3	3	3	3	2	2	2		3	3		2	3
CO5	1	1	1	2	3	1	3	2		1	1		3	3
COs / PSOs		PSO1			PSO2	I		PS(03				PSO4	
CO1		3			2			1					1	
CO2		3			3			3					2	
CO3		3			3			2					3	
CO4		2			3			3					3	
CO5		3			2			2					3	
3/2/1 indicates	streng	th of c	orrelat	ion 3	– High	, 2 – M	edium,	1 – I	ow					
							ĺ							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills					
						✓								

Course Code	Course Title	Ty/	L	T/S.Lr	P/ R	С
		Lb/				
		ETL				
BCS18OE2/	ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM	Ту	3	0/0	0/0	3
BCS20OE2						

UNIT I: Introduction and Problem Solving

9 Hrs

Introduction – Types of agents – Agent Structure – Problem solving agents – Problem Formulation - Uninformed search strategies.

UNIT II: Informed Search and Game Playing

9 Hrs

Informed search Strategies – A* Heuristic function – Hill Climbing –Constraint Specification problem - Optimal decisions in games – Pruning

UNIT III: Knowledge Inference

9 Hrs

Knowledge representation - Inference - Backward chaining, Forward chaining, Fuzzy reasoning - Certainty factors-Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

UNIT IV: Planning and Machine Learning

9 Hrs

Planning-STRIPS-planning with state space search-partial order planning -Learning- Machine learning, adaptive Learning.

UNIT V: Expert Systems

9 Hrs

Expert systems – Architecture of expert systems, Roles of expert systems – Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems – MYCIN, DART, XOON, Expert systems shells.

Total Hrs:45

Text Books:

- 1. Stuart Russel and Peter Norvig "AI A Modern Approach", 2nd Edition, Pearson Education 2007.
- 2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", McGraw Hill- 2008. (Unit-1,2,4,5).
- 3. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007. (Unit-III)

References:

- 1. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
- 2. Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.
- 3. http://nptel.ac.in/

Subject Code:	Subject Name : PYTHON PROGRAMMING	T / L/ ETL	L	T / S.Lr	P/ R	С		
BCS18OE3/ BCS20OE3	Prerequisite: C, C++	Ту	3	0/0	0/0	3		
L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits								

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- The students will be able to do programming in Python.
- Develop a basic understanding of programming and the Python programming language.
- See the value of programming in a variety of different disciplines—especially as

		lue of p	prograi	nming	in a v	ariety	of diff	erent o	discipline	s—espe	cially as	it relates in		
	eering.													
COURSE O				` '										
CO1	Will remember the syntax and semantics of python programming.													
CO2	Will understand how functional and operations are to be utilized.													
CO3	Reproduce a working knowledge of concepts and terminology related to programming language													
	by developing student's creativity.													
CO4	Students will analyze the problem and provide solutions for the problem.													
CO5		ıble to i							lems.					
Mapping of C														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	2	3	1	3	3	3	3	2		
CO2	3	2	1	2	2	3	3	1	3	3	3	2		
CO3	3	2	1	3	3	3	2	2	3	3	3	2		
CO4	3	3	2	3	1	3	1	3	2	3	3	2		
CO5	3	2	2	2	1	3	3	3	3	3	3	3		
COs / PSOs		PSO1			PSO ₂			PSO3 PSO4				SO4		
CO1		3		3			3				3			
CO2		3		2			3				3			
CO3		3			3			3			3			
CO4		3		2			2				2			
CO5		3			3		3 2			2				
3/2/1 indicate	es strer	igth of	correla	tion 3	3 – Hig	h, 2 – N	Aediun	n, 1 – 1	Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills					
						✓								

Course Code		T y/ Lb/ ETL	L	T / S.Lr	P/ R	С
BCS18OE3/	PYTHON PROGRAMMING	Ту	3	0/0	0/0	3
BCS20OE3						

UNIT I: INTRODUCTION 9 Hrs

History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation.

UNIT II: TYPES, OPERATORS AND EXPRESSIONS

9 Hrs

Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass.

UNIT III: FUNCTIONS 9 Hrs

Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

UNIT IV: DATA STRUCTURES

9 Hrs

Lists - Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences. Comprehensions.

UNIT V: OBJECT ORIENTED PROGRAMMING OOP IN PYTHON

9 Hrs

Classes, 'self variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding.

Total Hours: 45

TEXT BOOKS:

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 2. Learning Python, Mark Lutz, Orielly.

- 1. Think Python, Allen Downey, Green Tea Press
- 2. Core Python Programming, W.Chun, Pearson.
- 3. Introduction to Python, Kenneth A. Lambert, Cengage.

Subject Code: BCS18OE4/	_	ct Name MPUTI		RDWAR	E AND	MAINT	ENANC	Œ	Ty/ Lb/ ETL	L		[/ Lr	P/R	C		
BCS20OE4	Preregi	nisite: B	Basics of	comput	er.				Ty	3	0	/0	0/0	3		
L : Lecture T : '	_				ning P:	Project	R · Rese	arch C:			0	, 0	0/0			
T/L/ETL : Theo			-		•	Troject	11 . 11050	aren e.	Creares							
OBJECTIVE :	•			y and Be												
		out basic	es of com	nouters h	ardware	& softw	are									
				_	tem insta			cation in	stallatio	n						
			_		Software											
COURSE OUT									<u> </u>							
CO1					nowledg	ge on co	mputer	hardwa	re comp	onei	nts.					
CO2	Able t	o analyz	ze the p	roblem	in hardv	vare										
CO3	Able t	o apply	solution	n for the	proble	ms by tr	oublesh	oot the	problen	ıs.						
CO4	Analy	ze the fi	unctiona	ality and	l compo	nents of	f the sof	tware b	ased on	the	concep	ots of h	ardwa	re.		
CO5	Able t	o provio	workin	g pro	blems											
Mapping of Co																
COs/POs	ourse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO1												1 PC)12		
CO1	3	3	3	2	2	2	2	3	3		3	2		2		
CO2	3	3	2	3	3	2	3	3	2		2	3		3		
CO3	2	2	3	2	2	3	3	2	2		2	2		2		
CO4	2	2	2	3	1	1	2	1	1		2	2		1		
CO5	2	3	3	2	PGGA	1	1	3	2		3	3				
COs / PSOs		PSO1			PSO2			PSO	3			PS				
CO1		3			3			2				3	3			
CO2		3			3			2				1				
CO3		3			2			3				3				
CO4	3 3 2 1 3 1 2 2															
CO5	s strength of correlation 3 – High, 2 – Medium, 1 – Low							2					<u> </u>			
3/2/1 mulcates																
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							

Course Code	Course Title	T y/ Lb/ ETL	L	T/S.Lr	P/R	С
BCS18OE4/ BCS20OE4	COMPUTER HARDWARE AND MAINTENANCE	Ту	3	0/0	0/0	3

UNIT I: Introduction 9 Hrs

Evolution of Computers - Generations, Types of computers, Computer system characteristics, Basic components of a Digital Computer - Control unit, ALU, Input/output functions and memory, Memory addressing capability of a CPU, Word length of a computer, processing speed of a computer, Computer Classification. Number Systems: Definition of Number system, necessity of binary number system, binary, decimal, octal and hexadecimal number system, inter conversion of numbers, Representation of integers, fixed and floating points, BCD codes, Error detecting and correcting codes, character Representation-ASCII, EBCDIC, Binary arithmetic

UNIT II:Input /Output devices

9 Hrs

Input /Output devices-: Keyboard, Mouse, Trackball, Joystick, Digitizing tablet, Scanners, Digital Camera, MICR, OCR, OMR, Bar-code Reader, Voice Recognition, Light pen, Touch Screen, Display unit and it types -Digital, Analog, Size, Resolution, Refresh Rate, Dot Pitch, Video Standard - VGA, SVGA, XGA etc, Printers & types - Daisy wheel, Dot Matrix, Inkjet, Laser, Line Printer, Plotter, Sound Card and Speakers.

Memory - RAM, ROM, EPROM, PROM and other types of memory, Storage fundamentals - Primary Vs Secondary Data Storage, Various Storage Devices - Magnetic Tape, Magnetic Disks, Cartridge Tape, Hard Disk Drives, Floppy Disks (Winchester Disk), Optical Disks, Zip Drive, flash drives, Blue Ray Disc,

UNIT III:Software Concepts

9 Hrs

Software Concepts: Introduction, types of software - System & Application software; Definition of Operating System, Types of Operating System, features of Unix, Basic Architecture of Unix/Linux system, features of Kernel and Shell. Introduction to Unix File system – History of Microsoft Windows operating system, File system in Windows, introduction to MAC operating system and file system.

UNIT IV: Computer assembling

9 Hrs

Computer assembling – Operating System Installation, install/upgrading new hardware, device driver configuration. Installing and configure various type of Application software. Data Backup – automatic , Manual – Data / File recovery. Configuring various type of system services. Software upgrade and Maintenance.

UNIT V: Case study

9 Hrs

Case study on troubleshooting in Hardware, Software (System and Application) and Networking.

Total Hours: 45

TEXT BOOK

- 1. Computer Fundamentals B. Ram New Age International Publishers
- 2. PC Hardware: A Beginner's Guide RON GILSTER- McGraw-Hill

REFERENCE BOOKS

- 1. Computer Fundamentals P. K. Sinha BPB Publication
- 2. PC Software Shree Sai Prakashan, Meerut

Subject Code: BCS18OE5/ BCS20OE5	Subject Name	DAT		SE CO	NCEPI	'S			Ty/ Lb/ ETL		L S.	Lr	P/R	
	Prerequisite: 1								Ty		3 0	/0	0/0	3
L : Lecture T : Tutorial	S.Lr : Supervis	ed Lear	ning P	: Proje	ct R:F	Researcl	h C: Cr	edits						
T/L/ETL: Theory/Lab/E	Embedded Theor	y and L	ab											
OBJECTIVE:														
	the Basics of D		•		_									
	erstand the DDL	-		_										
	ty to work with		abase so	oftware	•									
COURSE OUTCOMES	, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			-40 of D	DMC									
CO1	Able to learn the				BM2									
	Understand the		•											
CO3	Understand the													
CO4	The students w						i databa	ise is t	een ma	ınta	ined.			
CO5	Able to create					tware								
Mapping of Course Ou						DO.	DO5	DOO	DC	<u> </u>	DO10	DO1:		2012
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			PO10	PO11	L J	PO12
CO1	3	1	2	1	1	3	1	1	3		3	1		1
CO2	3	2	1	2	1	3	2	2	2		3	1		2
CO3	3	3	3	2	2	3	2	2	3		3	2		2
CO4	3 2 3		3	2	2	2	2	3		2	2		2	
CO5	3	3	3	3	2	2	1	2	2	2	2	2		1
COs / PSOs	PSO				PSO2			PS				PSC)4	
CO1	2				3			2				2		
CO2	2				3			3				3		
CO3	3				3			3				3		
CO4	2				3			3				2		
CO5	1				3			3	3			3		
3/2/1 indicates strength	of correlation	3 – Hi	gh, 2 –	Mediu	m, 1 –	Low	1							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	✓ Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
						•								

Course Code	Course Title	Ty / Lb/ ETL	L	T/S.Lr	P/ R	С
BCS18OE5/ BCS20OE5	DATA BASE CONCEPTS	Ту	3	0/0	0/0	3

UNIT I: Fundamentals of Database

9 Hrs

DBMS Definition, Characteristics of DBMS, Application and advantages of DBMS, Instances, Schemas and Database States, Three Levels of Architecture, Data Independence, DBMS languages, Data Dictionary, Database Users, Data Administrators.

UNIT II: ER Model 9 Hrs

Data Models, types and their comparison, Entity Relationship Model, Entity Types, Entity Sets, Attributes and its types, Keys, E-R Diagram, Data Integrity RDBMS –Concept, Components and Codd's rules.

UNIT III: Relational Model 9 Hrs

Relational Algebra (selection, projection, union, intersection, Cartesian product, Different types of join like theta join, equijoin, natural join, outer join) Functional Dependencies, Good & Bad Decomposition, Anomalies as a database: A consequences of bad design, Normalization: 1NF, 2NF, 3NF, BCNF, 4NF 5NF.

UNIT IV: SQL 9 Hrs

Introduction to SQL, DDL, DML, and DCL statements, Creating Tables, Adding Constraints, Altering Tables, Update, Insert, Delete & various Form of SELECT- Simple, Using Special Operators for Data Access. Aggregate functions, Joining Multiple Tables (Equi Joins), Joining a Table to itself (self Joins) Functions

UNIT V: PL / SQL 9 Hrs

Introduction to PL/SQL (blocks of PL/SQL, Variables, constants), Control Structure Introduction to Stored Procedures, Functions, Cursor and Triggers.

Total Hours: 45

Text Book:

1. H. F. Korth & A. Silverschatz, Database Concepts, Tata McGraw Hill, New Delhi

References:

- 1. C. J. Date, Database Systems, Prentice Hall of India, New Delhi.
- 2. Ivan Bayross, SQL,PL/SQL, The programming language of Oracle.

Subject Code: BCS18OE6/ BCS20OE6	•	t Name NTROD		N TO M	IACHIN	NE LEA	RNING		Ty/ Lb/ ETL			Γ/ .Lr	P/R	C
	Prerequ	uisite: D a	ata ware	ehousing	g, Data r	nining.			Ty		3 0	/0	0/0	3
L : Lecture T : Tutoria		-		_	: Projec	t R:Re	search C	C: Credit	S		•	•		•
T/L/ETL : Theory/Lat	o/Embed	ded The	ory and	Lab										
OBJECTIVE:				_	_			_						
• Introduce the	•		-		data and	d develop	a stron	g theore	tical fo	ound	ation for	r undei	standi	ng
state of the ar					1	1'	1 , 1	. 6.1	1.					
This course is	broad in	i scope a	na gives	the stud	ent a no	listic und	aerstana	ing of tr	ie subje	ect				
COURSE OUTCOM	IES (CO	s):(3-	5)											
CO1				ts of Dat	a mining	g and Da	ta wareh	nousing						
CO2	Unders	tand the	basic the	eory und	erlying	machine	learning	Σ.						
CO3				ne learni					rengths	s and	l weakn	esses.		
CO4	•			g algorith	-									
CO5				ning pro		_								
Mapping of Course (8		FF					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO)9	PO10	PO1	1 P	O12
CO1	3	1	1	1	2	1	2	1		2	3	2		1
CO2	3	2	2	1	2	2	2	2	3	3	2	2		2
CO3	3	2	3	2	2	2	1	3		3	3	3		3
CO4	3	3	3	2	3	3	3	3		3	3	3		3
CO5	3	3	3	2	3	3	3	3		3	3	3		3
COs / PSOs		PSO1			PSO2			PSO	3			PS	O4	
CO1		2			2			2				,	2	
CO2		2			3			2					2	
CO3		3			2			3					3	
CO4		3			2			3					3	
CO5		3			2			3					3	
3/2/1 indicates streng	th of co	rrelatio	n 3 – H	ligh, 2 –	Mediun	n, 1 – L	ow							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	✓ Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					

Course Code	Course Title	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BCS180E6/ BCS200E6	INTRODUCTION TO MACHINE LEARNING	Ту	3	0/0	0/0	3

UNITt I: Introduction 9 Hrs

Introduction -Idea of Machines learning –Issues in machine learning-Concept Learning task-search-version spaces-candidate elimination algorithm.

UNIT II: Classification Learning

9 Hrs

Decision tree Learning-Hypothesis space search-Inductive bias-Issues-Artificial Neural Networks-representation-learning-Back propagation algorithm-Face recognition-advanced topics-Evaluating Hypotheses.

UNIT III: Statistical Learning

9 Hrs

Bayesian Learning-Bayes Theorem-Bayesian belief networks-EM algorithm-Computational learning theory-Finite and Infinite hypothesis spaces.

UNITIV: Clustering 9 Hrs

Instance Based learning-K-Nearest neighbor learning-Genetic algorithms-Learning set of rules-FOIL-Inverted resolution.

UNIT V: Analytical Learning

9 Hrs

Analytical Learning-PROLOG-Combinative learning-KBANN-EBNN-FOCL-Reinforcement Learning-Qlearning.

Total Hours: 45

Text Books:

1. Machine Learning, Tom M. Mitchell McGraw-Hill Science/Engineering/Math.

Reference Books:

1. Building Machine Learning Systems with Python, Richert & Coelho, 2013.

Open Lab

Subject	Subject	Name	:					T/L	ETL	L	T/S.Lr	P/R	С	
Code:	VI	SUAL	PROG	RAM	MING I	LAB								
BCS18OL1/	Prerequ	isite: (C,C++.					Lb		0	0/0	0/0		1
BCS20OL1	•													
L : Lecture T	: Tutoria	l S.Lr	: Supe	rvised I	Learnin	g P:	Proje	ct R:	Research	n C: Cı	edits			
T/L/ETL: Th	eory/Lab	/Embec	lded Th	eory ar	nd Lab									
OBJECTIVE	Ξ:													
	he object						•	_	_					
	tudents w					•			e progra	mming	5.			
	etting mo				window	s pro	gramı	ning.						
COURSE OF					1 D		•							
CO1	Describ		•		_		_							
CO2	Demon													
CO3	Apply a								_					
CO4	Analyze				cepts o	f com	puter	progra	nming					
CO5	Create	User in	terface	design										
Mapping of 0	Course O	utcom	es with	Progr	am Ou	tcome	es (PO	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO	5	PO7	PO8	PO9		PO10	PO11	PO12
CO1	3	2	2	1	1	1	1	1	2	1		2	1	1
CO2	3	3	1	3	2	1	1	1	2	1		2	1	1
CO3	3	2	2	1	1	1	1	1	2	1		2	1	1
CO4	3	3	2	2	2	1	1	1	2	1		2	2	2
CO5	3	3	2	2	2	_	1	1	2	2		2	2	2
COs / PSOs		PSO1			PSO	2				PSO3			PSO	4
CO1		3			2					1			2	
CO2		3			1					1			1	
CO3		3			2					1			2	
CO4		3			2					1			1	
CO5		3			2					1			1	
3/2/1 indicate	es streng	th of co	rrelati	on 3-	- High,	2-N	<u> Iediu</u>		Low	1	1		1	
								kill						
			al					al S						
		ces	oci					nica						
2		ien	S		ves		ect .	ech						
Category	ces	Sc	anc	re	ecti	ves	roje	/ T(
\ate\	ien	ing	ies	ပိ	Ek	ecti	/ P	sdi		ls				
	Sc	leer	anit ces	am	am	Ek	cal	ıshi] kil				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Sk		Soft Skills				
	Βε	Ē	H. Sc	Pr	Pr	O		In		So			1	
							✓							

Course Code	Course Title	T y/ Lb/ ETL	L	T / S.Lr	P/ R	С
BCS18OL1/ BCS20OL1	VISUAL PROGRAMMING LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. VISUAL BASIC
 - 1. Adding menus to forms
 - 2. Creating dialog boxes with various options
 - 3. MDI applications
 - 4. Writing code for various keyboard and mouse events
 - 5. OLE container control
 - 6. Data access through Data control and DAO.
 - 7. Active X control
 - 8. Active X Document
 - 9. Active X DLL 2.
- 2. VISUAL C++
 - 1. Creating applications with App wizard
 - 2. Working with MFC
 - 3. Exception handling
 - 4. Loading Editing and Adding resources Linking resources to applications
 - 5. Drawing bitmaps
 - 6. Threads
 - 7. OLE
 - 8. Graph Applications

LEARNING OUTCOMES: Upon completion of this course, the student will be able to:

- a. Design, create, build, and debug Visual Basic applications.
- b. Explore Visual Basic's Integrated Development Environment (IDE).

Subject	Subject 1	Name :								Ty/		T /		
Code:			W	EB DE	SIGN	LAB				Lb/	L	S.Lr	P/R	C
BCS18OL2/	D :	·	-							ETL			210	- 4
BCS20OL2	Prerequis			. 17		D D	· D	- D	1.0	Lb	0	0/0	3/0	1
L : Lecture T :			•		•	P: Pro	ject R	: Resea	rch C	: Credits				
T/L/ETL : The		mbedde	ed Theo	ory and	Lab									
OBJECTIVES		337	1. T.	1 1										
	verview Ob sic Concep			_										
	dvance Pro			mologi	ies									
COURSE OU				5)										
CO1	Understa	, ,			ΓΜL.X	ML.XI	HTML							
CO2	Rememb													
CO3								g know	ledge	for determ	ining sol	utions.		
CO4	Able to a		•											
CO5	Able to d			1 0										
Mapping of Co				1 0			POs)							
COs/POs	PO1	PO2		PO3	PO4	PO5	PO6	PO7		PO8	PO9	PO10	PO11	PO12
CO1	3	3		2	2	2	2	1		3	2	3	2	3
CO2	3	3		3	2	2	3	2		3	2	3	2	3
CO3	3	3		3	3	1	2	3		3	3	2	3	2
CO4	3	3		3	1	1	1	1		2	1	2	3	1
CO5	3	3		3	1	2	1	1		2	1	2	3	2
COs / PSOs		PSO	1			PSO2				PSO3			PSO4	
CO1		3				3				3			2	
CO2		3				2				3			3	
CO3		3				2				3			3	
CO4		3				2				3			1	
CO5		3				3		L		3			1	
3/2/1 indicates	strength	of corr	elatior	1 3 – H	ligh, 2	– Med	ium, 1	_ Low		<u> </u>			1	
			es	Social					ical Skil					
Category	Basic Sciences		Engineering Sciences	Humanities and Soc Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
				· · · - 4			√	. ,		_				

Course Code	Course Title	T y/ Lb/ ET L		T / S.Lr	P/ R	С
BCS18OL2/ BCS20OL2	WEB DESIGN LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Practice Internet applications.
- 2. Explore Web browsers, search engines
- 3. Familiarise with web portals, e-commerce sites, blogs etc
- 4. Basic Html Tags
- 5. Hyper Links, Tables & Multimedia
- 6. Frames & iFrames
- 7. Inline, Internal and External Style sheets
- 8. Design a web page to display your full bio-data.
- 9. Simple Validating Form (a) HTML forms, (b) JavaScript
- 10. Registration Form with Multi-Validating
- 11. Design a web page to select the elective subject through online with registration form.

Ty/

Subject Name:

Subject Code:

BCS18OL3/ BCS20OL3	Susje	PYT		PROGI	RAMM	ING L	AB		Lb/ ETL	Ι			P/R	C
	Prerec	quisite:	Basic	knowle	dge on	compu	ters, C.		Lb	(0/	0 3	3/0	1
					P : Pro	ject R:	Resear	ch C:	Credits		•	,		
T/L/ETL: Theory/Lab/E	mbedde	ed Theo	ry and	Lab										
OBJECTIVES:														
To write, test	, and d	ebug si	mple Py	ython p	rogram	s.								
To implement						s and lo	oops.							
Use functions														
Read and wri				n Pytho	n.									
COURSE OUTCOMES														
CO1						. •	progran							
CO2							als and o	circles.	·					
CO3	Use ca	apacitie	es for or	rganiziı	ng Pyth	on prog	grams.							
CO4	Stude	nts can	Create	own py	ython p	rogram.								
CO5	Classi	ify the b	oasic da	ita type	and str	ucture	in pytho	on prog	gram					
Mapping of Course Out	comes	with P	rogran	1 Outco	omes (I	POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	8 PO	9	PO10	PO11	P)12
CO1	3	2	1	1	2	1	1	1	1		1	1		2
CO2	3	2	1	1	2	1	1	1	1		1	1		2
CO3	3	2	1	1	2	1	1	1	1		1	1		2
CO4	3	2	1	1	2	1	1	1	1		1	1		2
CO5	3	2	1	1	2	1	1	1	1		1	1		1
COs / PSOs		PSO1			PSO2			PS(03			PSO	4	
CO1		3			2			2				2		
CO2		3			2			1				1		
CO3		3			2			2				1		
CO4		3			2			2				2		
CO5		3			1			1				1		
3/2/1 indicates strength	of corr	elation	3-H	ligh, 2	– Medi	um, 1	- Low							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills					
							√							

Course Code	Course Title	T y/ Lb/ ETL	L	T / S.Lr	P/R	С
BCS18OL3/ BCS20OL3	PYTHON PROGRAMMING LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Write a python program to perform all arithmetic operation.
- 2. Write a python program to change the last character in a word.
- 3. Write a python program to check for palindrome.
- 4. Write a python program to check for prime number.
- 5. Write a python program to find the length of the word and display either the length is odd or even.
- 6. Write a python program to perform Fibonacci series for n numbers.
- 7. Write a python program to display the words using Dictionaries.
- 8. Write a python program to to change the alternative characters of a word.
- 9. Write a python program to find the ASCII value for your name.
- 10. Write a python program to to perform stack operation using array.

T/ I T/SIr P/R

Subject

Subject Name ·

Subject	Subje	ect Nan	ne:					T /	L	T/S.Lr	P / R		C
Code:		COM	PUTEI	R NET	WORK	LAB		L/					
BCS18OL4/								ETL					
BCS20OL4			C++, ja					Lb	0	0/0		/0	1
L : Lecture T	: Tutor	rial S.	Lr ։ Տսյ	pervised	d Learn	ing P:	Projec	t R:R	esea	rch C: Credi	ts		
T/L/ETL: Th	eory/L	ab/Emb	edded 7	Theory	and La	b							
OBJECTIVE	ES:												
				_			ween straight cable and cross over				r cable.		
			et trace		nulate v	arious	networl	KS.					
COURSE O													
CO1									_ `	g the cable.			
CO2				•		•		levices.					
CO3			analyz										
CO4	Reme	mber th	ne preex	kisting t	opolog	y conce	ept and	analyze	hov	w topology v	works.		
CO5	Unde	rstand t	he stand	dard ad	dress co	ode of r	network	device	s.				
Mapping of (Course	Outco	mes wi	th Prog	gram C	utcom	es (PO	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	1	3		3	3	3	2
CO2	3	2	1	2	2	3	3	1		3	3	3	2
CO3	3	2	1	3	3	3	2	2		3	3	3	2
CO4	3	3	2	3	1	3	1	3		2	3	3	2
CO5	3	2	2	2	1	3	3	3		3	3	3	3
COs / PSOs		PSO1			PSO2			PS	SO3			PSO4	
CO1		3			3				3			3	
CO2		3			2				3			3	
CO3		3			3				3			3	
CO4		3			2				2			2	
CO5		3			2				3			2	
3/2/1 indicate	es strer	igth of	correla	tion 3	3 – Hig	h, 2 – N	Mediun	· ·	Low	T		ı	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill		Soft Skills			
							✓						

Course Code	Course Title	T y/	L	T /	P/R	C
		Lb/		S.Lr		
		ETL				
BCS18OL4/	COMPUTER NETWORK LAB	Lb	0	0/0	3/0	1
BCS20OL4						

LIST OF EXPERIMENTS

- 1. Study of different types of Network cables and Practically implement the cross-wired cable
- 2. Study of Network Devices in Detail.
 - 2a. Study of Network Devices in layer1(HUB, REPEATER)
 - 2b.Study of Network Devices in layer2(Swith)
 - 2c.Study of Network Devices in layer3(Router)
- 3. Study of FIREWALL
- 4. Connect the computers in Local Area Network.
- 5. Study of Network IP.

5a. IPV4

5b. IPV6

- 6. Study of Network Topologies
 - 6a. Bus Topology
 - 6b. Ring Toplogy
 - 6c. Star Topology
- 7. Study of MAC address and port numbers.

Subject Code: BCS18OL5/ BCS20OL5	Subjec	t Name PHP)L PRO	GRAMN	MING L	AB		Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
	Prerequ	uisite: Ba	sic of co	mputers	, DBMS	, HTML	, XML.		Lb	0	0/0	3/0	1
L : Lecture T : Tu	torial S	S.Lr : Su	pervised	Learning	g P:Pro	ject R:	Researc	h C: Cred	its				!
T/L/ETL : Theory	//Lab/En	nbedded	Theory a	ınd Lab									
OBJECTIVES:													
		Web Site	•		-								
		Students		me expe	rt in My	SQL.							
COURSE OUTC				C	DLID and	Margot		. ()					
CO1 CO2				nfigure a PHP and MySQL package () e concepts (Database concepts: Fields,					de rolati	onal da	tahasa	tymes	
C02		iships, no						ius, recor	is, relati	onai da	tabase,	types o	1
CO3				ation). dvanced SQL topics like embedded SQ!				SQL, pro	cedures	connec	tivity th	rough	
CO4	Create	indexes	for datab	ases for	efficient	retrieva	l.						
CO5	Create	GUI Pro	grammir	ng and D	atabases	operatio	ns in SQ	L.					
Mapping of Cou	rse Outo	omes wi	th Prog	ram Ou	tcomes (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO	11 P	O12
CO1	2	3	2	1	2	3	2	2	2	2	1		2
CO2	3	3	3	2	2	2	1	1	3	3	2		2
CO3	2	2	3	2	3	3	1	1	3	2	2		3
CO4	3	3	3	3	2	3	2	1	3	2	3		2
CO5	3	3	2	2	2	3	2	2	3	1	3		3
COs / PSOs		PSO1			PSO2			PSO3				504	
CO1		2			3			3				3	
CO2		3			3			3				3	
CO3		2			3			3				2	
CO5		2 2		3 3				3				3	
	renoth o		ation 3	3 - High, 2 - Medium, 1 - Low								3	
5/2/1 mateures st													
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives Open Electives Practical / Project Internships /			Internships / Technical Skill					

Course Code	Course Title	T y/ Lb/ ETL	L	T / S.Lr	P/ R	С
BCS18OL5/ BCS20OL5	PHP / MySQL PROGRAMMING LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Use of select statements for queries
- 2. Nested queries using SQL
- 3. Built in functions in SQL
- 4. Update operations using SQL.
- 5. Use of index, creating views and querying in views
- 6. Create a php program to find odd or even number from given number
- 7. Write a php program to find maximum of three numbers.
- 8. Write a PHP program to swap two numbers.
- 9. Write a PHP Program to demonstrate the variable function: Gettype():
- 10. Write a PHP program to drop table using MySQL.
- 11. Create a student Registration in PHP and Save and Display the student Records
- 12. Write a program to Develop student registration form and display all the submitted data on another page.

OPEN ELECTIVES -CIVIL

				LLUTI	ION AN	D		T y/ Lb/ ETL	L	T/S.Lr	P/R	С
Pre	erequisite	: NIL						Ту	3	0/0	0/0	3
Tutorial	SLr : Su	pervised	Learning	g P : Pro	ject R : 1	Research	C: Cre	dits			1.	
ory/Lab/	/Embedd	ed Theory	y and La	b								
: earnthefu	ındamen	talconcep	tsinthefi	eldofwat	terpollut	ionandit	smanag	ement				
TCOMI	ES (COs):(3-5)	At the e	nd of the	e course,	Student	s will b	e able to				
Т	o study t	he various	s Effects	of Wate	er polluti	on						
Т	o learn tl	ne importa	ance of n	nethods	of contr	ol of Wa	ter Poll	ution				
Т	o unders	tand the v	arious W	ater Pol	llution c	ontrol A	ct					
ourse O	utcomes	with Pro	gram O	utcome	s (POs)							
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	1 P	O12
3	3	3	3	-	2	3	3	-	-	2		1
3	3	3	3	-	2	3	3	-	-	2		1
3	3	3	3	-	2	3	3	-	-	2		1
	PSO1]	PSO2	PS	03	PS	O4					
	3	3	3	3	3	,	3					
	3	3	3	3	3		3					
	3	3	3		3	,	3					
s streng	gth of co	rrelation	3 – H	igh, 2 –	Mediu	m, 1 – 1	Low			·		
Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Tutorial ory/Lab/: carnthefu TCOMI TOURSE O PO1 3 3 3 s streng	Tutorial SLr: Suory/Lab/Embedd: carnthefundamen TCOMES (COS To study t To learn th To unders Ourse Outcomes PO1 PO2 3 3 3 3 3 PSO1 3 s strength of co	Transfer of the result of the	Trerequisite: NIL Tutorial SLr: Supervised Learning ory/Lab/Embedded Theory and Lab: Example and Embedded Theory and Lab:	Tutorial SLr: Supervised Learning P: Proporty/Lab/Embedded Theory and Lab Transcription (COs): (3-5) At the end of the transcription (COMES (COs): (3-5) At the end of the transcription (COMES (COs): (3-5) At the end of the transcription (COMES (COs): (3-5) At the end of the transcription (COMES (COs): (3-5) At the end of the transcription (COMES (COs): (3-5) At the end of the transcription (COMES (COs): (3-5) At the end of the transcription (COS): (3-5) At the end o	Trouse Strength of correlation 3 - High, 2 - Medium H	Prerequisite: NIL Tutorial SLr : Supervised Learning P : Project R : Research ory/Lab/Embedded Theory and Lab : carnthefundamentalconceptsinthefieldofwaterpollutionandit TCOMES (COs) : (3-5) At the end of the course, Student To study the various Effects of Water pollution To learn the importance of methods of control of Water pollution To understand the various Water Pollution control A Dourse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 3 3 - 2 3 3 3 3 3 - 2 3 3 3 3 3 3 - 2 3 PSO1 PSO2 PSO3 PSO3 PSO3 PSO3 PSO1 PSO2 PSO3 PSO3 PSO3 PSO3 S S strength of correlation 3 - High, 2 - Medium, 1 - 1 S strength of correlation 3 - High, 2 - Medium, 1 B strength of correlation 3 - High, 2 - Medium, 1 B strength of correlation 3 - High, 2 - Medium, 1 B strength of correlation 3 - High, 2 B strength of correlation 3 B stren	Tro study the various Effects of Water pollution control Act rounderstand the various Water Pollution control of Water Pollution control Act rounderstand the various Water Pollution control of Water Pollution control Act rounderstand the various Water Pollution control of Water Pollution control Act rounderstand the various Water Pollution control Act rounderstand the various Water Pollution control of Water Pollution con	Try Prerequisite: NIL Tutorial SLr : Supervised Learning P : Project R : Research C: Credits ory/Lab/Embedded Theory and Lab : carnthefundamentalconceptsinthefieldofwaterpollutionanditsmanagement TCOMES (COs) : (3-5) At the end of the course, Students will be able to To study the various Effects of Water pollution To learn the importance of methods of control of Water Pollution To understand the various Water Pollution control Act POURSE OUTCOMES WITH Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 3 3 3 3 - 2 3 3 3 - 3 3 3 3 3 3 3 3	ITS MANAGEMENT	TTS MANAGEMENT	TTS MANAGEMENT

Subject Code	Subject Name	T y/ Lb/ ETL	L	T/S.Lr	P/R	С
BCE18OE1/BCE20OE1	WATER POLLUTION AND ITS MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I SOURCES&CHARACTERISTICSOFWATERPOLLUTION

9 Hrs

Waterpollution-Sources&typesofwaterpollution-Physical,chemical&biological-Effectofwater pollution.DrinkingwaterqualitystandardswasteWatertreatment-Primary,secondary,tertiary-water pollution prevention & control act -1974.

UNIT II WATER QUALITY&STANDARDS

9 Hrs

Quality of surface waters, Water quality in flowing waters, Water quality in impounded waters, Groundwater quality, Water quality standard Microbiological quality of drinking water, and Chemical quality of drinking water

UNIT III INDUSTRIALACTIVITY&MITIGATIONMEASURES

9 Hrs

Role of water in different industries-Effluent discharge characteristics-Discharge Standards for Rivers and Streams-Role of stakeholders, Public NGOS, Government in Protection of Water bodies-Control Measures-Mitigation Measures for Industrial Water Contamination due to industries.

UNIT IV WATERPOLLUTIONREGULATIONS

9 Hrs

Administrative regulation under recent legislations in water pollution control. Water (Prevention & control of pollution) Act 1974 as amended by Amendment Act 1988. Water (Prevention & control of pollution) Rules 1975 Water (Prevention & control of pollution) Cess Act. 1977 as amended by Amendment Act1991.

UNIT V ROLE OFREGULATORYBOARDS

9 Hrs

SustainableDevelopment,RainWaterHarvesting-Methods-WaterPollution-CausesandEffects- RoleofRegulatorybodiesandLocalbodies-CPCB-TWADBoard-CMWSSBetc-CaseStudies related to Effective WaterManagement

Total Hours: 45

TEXT BOOKS

1. Fair. G.M, "Waterand Wastewater engineering Vol. I&II". John Wileyandsons, Newyork. 2010.

REFERENCES

- 1. Metcalf & Eddy, "Wastewater engineering, Treatment and Reuse", Tata MacGrawhill publications, 2008.
- 2. Eckenfelder, W. W., ""Industrial Water Pollution Control", McGraw-Hill, 2009.
- $3.\ Arceivala. S.J, "Waste water Treatment for Pollution Control", Tata McGraw-Hill, 2008.$
- 4. "Aruna Venkat Environmental Law and Policy", PHI learning private limited New Delhi, 2011
- 5. WaterManagementInIndia, "ConceptPublishingCompany", NewDelhi, 2004.

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

TY/L/ L

T/S.Lr P/R C

Subject

Subject Name

Percquisite: NIL	Code: BCE18OE2/B CE20OE2	E	ENVIRON NINDUST	MENT,H	IEALTH	HANDS.	AFETY			ETL		1 / 5.121	1,10	
### Title Theory Lab Embedded Theory and Lab OBJECTIVE • Tounderstandthebasic needs of safety in humanhealth, environmental safety, electrical safety, safety against accidents and fire safety in various industries COURSE OUTCOMES (COS): (3-5) CO1 Students learn the occupational safety and hygiene CO2 They understand the workplace safety and their responsibility. CO3 Student possesses an awareness on environment, health and safety in industries Mapping of Course Outcomes with Program Outcomes (POS) COs/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 2 -			-							-	3	0/0	0/0	3
COURSE OUTCOMES (COs) : (3-5)	L : Lecture T :	Tutori	ial SLr : Su	pervised	Learning	g P : Pro	ject R :	Research	n C: Cr	edits				
Course Outcomes with Program Outcomes (POs) Students possesses an awareness on environment, health and safety in industries Course Outcomes Course C		ory/La	ıb/Embedd	ed Theor	y and La	b								
CO2	• Tou acci safety in variou	dents a	and fire istries		afetyin l	numanhe	ealth,env	vironmen	ntalsafe	ty,electrica	alsafety,s	safetyagai	nst	
Mapping of Course Outcomes with Program Outcomes (POs) COs/POs			•		ccupatio	nal safe	ty and h	ygiene						
Mapping of Course Outcomes with Program Outcomes (POs)	CO2		They unde	erstand the	workpl	ace safe	ty and th	neir respo	onsibili	ty.				
COs/POs	CO3		Student po	ossesses a	n awarer	ness on e	environn	nent, hea	lth and	safety in i	industries	s		
CO1	Mapping of C	ourse	Outcomes	with Pro	ogram C	utcome	es (POs)							
CO2	COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO1	0 PO1	1 P	O12
CO3	CO1	3	2	-	-	3	3	3	3	-	-	3		3
COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1	CO2	3	2	-	-	3	3	3	3	-	-	3		3
CO1	CO3	3	2	-	-	3	3	3	3	-	-	3		3
CO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			PSO1			PS	O3	PS	O4					
Co3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			3		3	í	3		3					
Basic Sciences Humanities and Social Brogram Core Program Electives Program Electives Open Electives Soft Skills Open Skills Open String String Open Electives Open			3	3	3	í	3		3					
Basic Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Internships / Technical Skill Soft Skills														
Category Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Internships / Technical Soft Skills	3/2/1 indicate	s stre	ngth of co	rrelation	3 – H	igh, 2 –	- Mediu	m, 1 – 1	Low			1	1	
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Ĭ	Practical / Project		Soft Skills				
							√							

Subject Code:	Subject Name	TY / L/ ETL	L	T / S.Lr	P/R	С
BCE18OE2/BCE20O E2	ENVIRONMENT,HEALTHANDSAFETY ININDUSTRIES	Ту	3	0/0	0/0	3

UNITI INTRODUCTION

9Hrs

Need for developing Environment, Health and Safety systems in work places, Status and relationship of Acts, Regulations and Codes of Practice, Role of trade union safety representatives .International initiatives, Ergonomics and workplace.

UNITII OCCUPATIONALHEALTHANDHYGIENE

9 Hrs

Definition of the term occupational health and hygiene, Categories of health hazards, Exposure pathways and human responses to hazardous and toxic substances, Advantages and limitations of environmental monitoring and occupational exposure limits, Hierarchy of control measures for occupational health risks, Role of personal protective equipment and the selection criteria.

UNITHI WORKPLACESAFETYANDSAFETYSYSTEMS

9 Hrs

Features of the satisfactory design of work premises HVAC, ventilation. Safe installation and use of electrical supplies, Fire safety and first aid provision, Significance of human factors in the establishment and effectiveness of safe systems, Safe systems of work for manual handling operations, Control methods to eliminate or reduce the risks arising from the use of work equipment, Requirements for the safe use of display screen equipment, Procedures and precautionary measures necessary when handling hazardous substances, Contingency arrangements for events of serious and imminent danger.

UNITIV TECHNIQUESOF ENVIRONMENTALSAFETY

9Hrs

Functions and techniques of risk assessment, inspections and audits, Investigation of accidents- Principles of quality management systems in health and safety management.

UNITY EDUCATIONANDTRAINING

9 Hrs

Factors to be considered in the development of effective training programmes, Principles and methods of effective training, Feedback and evaluation mechanism.

Total Hours: 45

REFERENCE

- EnvironmentalandHealthandSafetyManagementbyNicholasP.CheremisinoffandMadelyn
 L. Graffia, William Andrew Inc. NY, 1995
- 2. The Facility Manager's Guide to Environmental Health and Safety by Brian Gallant, Government Inst Publ. Effective Environmental, Health, and Safety Management Using the TeamApproachbyBillTaylor,CulinaryandHospitalityIndustryPublicationsServices2005

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code: BCE18OE3/BC		bject Na REEN BU	me JILDING	AND V	ASTU (CONCE	PTS		TY / L/ ETL	L	T / S.Lr	P/R	С
OE3	Pro	erequisite	: NIL						Ty	3	0/0	0/0	3
L : Lecture T :	Tutorial	SLr : Su	pervised I	Learning	P : Proje	ect R : R	esearch (C: Credits					<u> </u>
T/L/ETL : The	ory/Lab	/Embedde	ed Theory	and Lab									
OBJECTIVE													
• Toes	xposethe	enecessity	ofgreenb	ıildingar	dacquir	eknowle	dgeonva	stu-shastra	a				
COURSE OU	TCOM	ES (COs)	: (3-5)	On comp	letion of	the cou	rse the st	udents wo	ould have				
CO1	S	tudents s	hould be a	ble to de	escribe th	scribe the importance and necess				ouilding.			
CO2	5	Students s	should be	able to a	ssess a b	building on the norms avai			able for gre	en build	ing.		
CO3	S	tudents s	hould be a	ble to su	iggest m	terials and technologies			improve e	nergy ef	ficiency of	f buildi	ng.
CO4		Students s	should be	able to d	esign an	d assess	building	with norr	ns of vastu	-shastra			
Mapping of Co	ourse O	utcomes	with Pro	gram O	itcomes	(POs)							
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
CO1	3	-	-	-	3	3	3 3		-	-	3		2
CO2	3	-	-	-	3	3	3	3	-	=.	3		2
CO3	3	-	-	-	3	3	3	3	-	-	3		2
CO4	3	-	-	-	3	3	3	3	-	-	3		2
COs / PSOs		PSO1	PSC)2	PS	03	P	SO4					
CO1		3	3	3	3			3					
CO2		3	3	3	3	3		3					
CO3		3	3		3			3					
CO4		3	3		3			3					
3/2/1 indicates	s streng	th of co	rrelation	3 – Hi	gh, 2 – I	Mediun	1, 1 – Low						
Categ ory	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
J		En	Hur		P	√	Д.	Intern Skill					

Subject Code:	Subject Name	TY / L/ ETL	L	T / S.Lr	P/R	С
BCE18OE3/BCE20OE	GREEN BUILDING AND VASTU CONCEPTS	Ty	3	0/0	0/0	3
3						
3						

UNITIINTRODUCTION OFGREENBUILDING

9Hrs

Concept of green building, History of green building, Need of green building in present scenario, ImportanceofgreenbuildingMeritsanddemerits,Classificationofgreenbuilding,Assessmentmethods Global assessment and certification, Local assessment, LEED India GRIHA (Green Rating for Integrated HabitatAssessment)

UNITHPRINCIPLESANDELEMENTSOFDESIGNOFGREENBUILDING 9Hrs

Sustainability: concept and reality 2. Climate responsive process of design: Climatic zones, design sequence, shelter or form, land form, vegetation, water bodies, street widths, open spaces, ground character, plan form, orientation, roof form 3. Shading devices and their effect

UNITHITHERMAL COMFORT INSIDETHEBUILDING

9Hrs

Factors affecting, indices, cooling and heating requirement, Heat transmission through building sections, thermal performance of building sections, simple calculation for U value and insulation thickness .Day lighting. Ventilation

UNITIVWATERCONSERVATIONANDBUREAUOFENERGYEFFICIENCY 9Hrs

3 R's for water conservation, rain water harvesting, low flow fixtures, grey water recycling Material conservation: concept of embodied energy, low energy materials, sustainable materials, alternative materials Concept of carbon emission and its reduction Functions, policies, guidelines, Energy Conservation Building Code, Study of existing green buildingsIntroduction to Energy efficiency softwares, carbon calculators

UNIT VVASTUCONCEPT

9Hrs

History, scientific approach, importance of shapes size and direction, vastu of a plot, elements of vastu for selecting a plot, vastu of a residence, vastu of existing building

Total Hours: 45

TEXT BOOKS

- 1. Climate responsive architecture (A design hand book for energy efficient buildings), Arvind Krishnana, Simos Yannas, NickBaker, SVSzokolay, McGrawhillEducation, Seventhreprint, 2013
- 2. Renewable Energy and Environment -A Policy Analysis for India, H, Ravindranath, K Usha Rao, B Nataraja n, P Monga, Tata McGraw Hill,2000
- 3. EnergyandtheEnvironment,JMFowler,McGrawHill,NewYork,2ndEdition,1984

REFERENCE

- 1. Handbookonfunctionalrequirementsofbuildings(SP41),BIS,NewDelhi,1987
- 2. EnergyConservationbuildingcode(ECBC),Bureauofenergyefficiency,2011

Prerequisite: None	Subject Code: BCE18OE4/B CE20OE4	CL DE	EVELOP	CHAN(MENT	GE AND	SUSTA	INABLE	,		TY L/ ET			T / S.Lr	P/R	С
OBJECTIVE • TounderstandtheEarth's ClimateSystemandtheconceptofGlobalWarming, theimpactofclimate change on society and its mitigationmeasures. COURSE OUTCOMES (COs): (3-5) At the end of the course the student will be able to CO1 Understand the global climate change and its effects CO2 Learn about climate change adaptation and various mitigation measures CO3 Understand the concept of clean energy and energy conservation Mapping of Course Outcomes with Program Outcomes (POs) COs/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PC CO1 3 2 3 3 3 3 3 CO3 3 3 CO5/PSOS PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 3 3 CO5/PSOS PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 3 CO3 3 3 3 CO3 CO												3	0/0	0/0	3
OBJECTIVE • TounderstandtheEarth'sClimateSystemandtheconceptofGlobalWarming,theimpactofclimate change on society and its mitigationmeasures. COURSE OUTCOMES (COs): (3-5) At the end of the course the student will be able to CO1 Understand the global climate change and its effects CO2 Learn about climate change adaptation and various mitigation measures CO3 Understand the concept of clean energy and energy conservation Mapping of Course Outcomes with Program Outcomes (POs) COs/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PC CO1 3 2 3 3 3 3 3 CO3 3 3 CO3 3 3 3 3 3 3 3 3 3 3 3 3	L : Lecture T:	Γutorial	SLr : S	Supervise	ed Learni	ng P : Pı	roject R:	Resear	ch C:	: Cre	edits				
TounderstandtheEarth'sClimateSystemandtheconceptofGlobalWarming,theimpactofclimate change on society and its mitigationmeasures. COURSE OUTCOMES (COs): (3-5) At the end of the course the student will be able to CO1 Understand the global climate change and its effects CO2 Learn about climate change adaptation and various mitigation measures CO3 Understand the concept of clean energy and energy conservation Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 POC CO1 3 2 3 3 3 3 CO3 3 2 BSO4 CO1 3 3 3 3 3 3 CO3 CO3 3 3 3 3 CO3 3 3 3 CO3 CO3 3 3 3 CO3 CO3 3 3 CO3 CO3 3 CO3 3 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO5	T/L/ETL: The	eory/Lab	/Embedd	ed Theor	ry andLa	b									
TounderstandtheEarth'sClimateSystemandtheconceptofGlobalWarming,theimpactofclimate change on society and its mitigationmeasures. COURSE OUTCOMES (COs): (3-5) At the end of the course the student will be able to CO1 Understand the global climate change and its effects CO2 Learn about climate change adaptation and various mitigation measures CO3 Understand the concept of clean energy and energy conservation Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 POC CO1 3 2 3 3 3 3 CO3 3 2 BSO4 CO1 3 3 3 3 3 3 CO3 CO3 3 3 3 3 CO3 3 3 3 CO3 CO3 3 3 3 CO3 CO3 3 3 CO3 CO3 3 CO3 3 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO5	OBJECTIVE														
CO1	• Tou	inderstar society a	ndtheEart and its mi	h'sClimatigationn	ateSyster neasures.	nandtheo	conceptof	Global	Warn	ning	theimp,	actofcli	mate cha	inge	
Understand the global climate change and its effects CO2						e to									
Learn about climate change adaptation and various mitigation measures	CO1	11	Understand the global climate change and its ef												
Learn about climate change adaptation and various mitigation measures	GO2	U	nuerstand	I the global climate change and its ef				errects							
Understand the concept of clean energy and energy conservation	CO2	L	earn abou	out climate change adaptation and vari					nitiga	tion	measur	es			
Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO CO1 3 2 3	CO3			<u> </u>					_						
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO CO1 3 2 3				ž				1015)	011501	741	<u> </u>				
CO2 3 2 3								PO7	PC)8	PO9	PO10	PO1	1 P	O 12
CO3 3 2 3 3 3 3 COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 3 CO2 3 3 3 3 CO3 3 3 3 3 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low	CO1	3	2			3	3	3	3	3			3		3
COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 3 CO2 3 3 3 3 CO3 3 3 3 3 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low	CO2	3	2			3	3	3	3	3			3		3
COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 3 CO2 3 3 3 3 CO3 3 3 3 3 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low	CO3	3	2			3	3	3	3	3			3		3
CO1 3 3 3 3 CO2 3 3 3 3 CO3 3 3 3 3 3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low	COs / PSOs	PS	SO1	PS	SO2	P	SO3	P	SO4						
CO2 3 3 3 3 CO3 3 3 3 3 3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low															
CO3 3 3 3 3 3 3 3 3 3 3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low															
3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low															
				ala4ia		Iiah 2		. 1							
Category Basic Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Soft Skills	5/2/1 maicau	s streng	gin or co	ггегано	H 3-F	ngn, 4 -	- Mealuli	1, 1 –	LOW						
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					

Subject	Subject Name	TY	L	T/S.Lr	P / R	C	
Code:		/ L /					
BCE18OE4/		ET					
BCE20OE4		L					
	CLIMATE CHANGE AND SUSTAINABLE	Ty	3	0/0	0/0	3	
	DEVELOPMENT						

UNITI EARTH'SCLIMATESYSTEM

9Hrs

Introduction-Climate in the spotlight — Climate Classification - Global Wind Systems - Cloud Formation and Monsoon Rains – Storms and Hurricanes – The Hydrological Cycle – Global Ocean Circulation – Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – CarbonCycle.

UNITII OBSERVEDCHANGESANDITSCAUSES

9 Hrs

Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large Scale Variability – Drivers of ClimateChange–ClimateSensitivityandFeedbacks–TheMontrealProtocol–UNFCCC–IPCC.

UNITIII IMPACTS OFCLIMATECHANGE

9Hrs

Impacts of Climate Change on various sectors -Methods and Scenarios – Projected Impacts for Different Regions– Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNITIV CLIMATECHANGEADAPTATIONANDMITIGATIONMEASURES 9Hrs

Adaptation Strategy/Options in various sectors -Key Mitigation Technologies and Practices -Carbonsequestration - Carbon capture and storage (CCS)- Waste (MSW & Bio waste, Biomedical, Industrial waste - International and Regional Cooperation.

UNITY CLEAN TECHNOLOGYANDENERGY

9Hrs

Clean Development Mechanism –Carbon Trading examples of future Clean Technology – Biodiesel– Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power.

Total Hours: 45

REFERENCES

- AnilMarkandya, Climate Change and Sustainable Development: Prospects for Developing
 Routledge, 2002
- 2. Heal, G. M., Interpreting Sustainability, in Sustainability: Dynamics and Uncertainty, Kluwer Academic Publ 1998
- 3. Jepma, C.J., and Munasinghe, M., Climate Change Policy Facts, Issues and Analysis, Cambridge University Press, 1998
- 4. Munasinghe, M., Sustainable Energy Development: Issues and Policy in Energy, EnvironmentandEconomy: AsianPerspective, Kleindorfor P.R. et. al(ed.), Edward Elgar, 1996
- 5. DashSushilKumar, "ClimateChange–AnIndianPerspective", CambridgeUniversityPress India Pvt. Ltd, 2007.

Subject

Subject Name

TY / L/

T/S.Lr P/R C

Code: BCE18OE5/B	IN	TELLIC	SENT TR	ANSPO	RTATI	ON SY	STEMS		ETL				
CE20OE5	Pre	erequisite	: NIL						Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	l SLr : Sı	ipervised	Learning	g P : Pro	ject R:	Research	C: Cr	edits				
T/L/ETL: The	eory/Lab	/Embedd	ed Theory	y and La	b								
OBJECTIVE	,												
• Toe	exposeth	erecentac	lvanceme	ntsinTra	nsportSy	stems							
COURSE OU	TCOM	ES (COs	s): (3-5)	On com	pletion	of the co	urse the	studen	ts would h	ave			
CO1	I	Knowleds	ge on the	various 1	orinciple	s and as	pects of	Intellig	ent Transı	ort Syste	em.		
		Knowledge on the various principles and aspects						C		•			
CO2	K	Knowledge on intersection management											
CO3	K	Knowledge on advanced transport system											
M	f Course Outcomes with Program Outcomes (POs)												
				_			DO#	DO.	DO0	DO1	0 DO1		0012
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1		1 1	PO12
CO1	3	3	1	3	1	3		3			3		3
CO2	3	3	1	3	1	3		3			3		3
CO3	3	3	1	3	1	3		3			3		3
COs / PSOs		PSO1	J	PSO2	PS	03	PS	O 4					
CO1		3	3	3		3		3					
CO2		3	3	3	,	3	,	3					
CO3		3	3	3	í	3	,	3					
3/2/1 indicate	es strenș	gth of co	rrelation	3 – H	igh, 2 –	Mediu	m, 1 – 1	Low					
								Skill					
		ses	cial					ınıca					
		ienc	d So		ves		ect	[ecl					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	ore	Program Electives	Open Electives	Practical / Project	Internships / Technical					
>	cie	erin	nities es	Program Core	m E	Elect	al /]	ship	dills				
Category	sic 5	gine	Humanit. Sciences	gra	gra	en E	ctic	ıtern	Soft Skills				
Cate	Ba	En	Hu Sci	Prc	Prc		Pra	l l	Sof				
						√							

Subject Code:	Subject Name	TY / L/ ETL	L	T / S.Lr	P/R	С
BCE18OE5/B CE20OE5	INTELLIGENT TRANSPORTATION SYSTEMS	Ту	3	0/0	0/0	3

UNITI INTRODUCTIONTOINTELLIGENTTRANSPORTSYSTEM 8Hrs

Definition-RoleandResponsibilities-AdvancedTravellerInformationSystem-FleetOrientedITS Services-Electronic Toll Collection - Critical issues - Security - Safety 21

UNITII ITS ARCHITECTUREANDHARDWARE

9Hrs

Architecture–ITSArchitectureFramework–HardwareSensors–VehicleDetection–Techniques–DynamicMessage Sign – GPRS – GPS – Toll Collection

UNITIII INTERSECTIONMANAGEMENT

10Hrs

VideoDetection-VirtualLoop-Cameras-ANPR-IRLighting-IntegratedTrafficManagement- ControlCentre – Junction Management Strategies

UNITIV ADVANCEDTRANSPORTMANAGEMENTSYSTEM

10Hrs

ATMS-RouteGuidance-Issues-TravelInformation-PreTripandEnrouteMethods-Historical- Current-PredictiveGuidance-DataCollection-Analysis-DynamicTrafficAssignment(DTA)- Components-Algorithm

UNITY ADVANCEDTRAVELLERANDINFORMATIONSYSTEM

8Hrs

Basic ATIS Concepts - Smart Route System - Data Collection - Process - Dessemination to Travelers

-Evaluation of Information - Value of Information - Business Opportunities

Total Hours: 45

REFERENCES

- 1. IntelligentTransportSystems,IntelligentTransportationPrimer,Washington,US,2001
- 2. HenryF.Korth,andAbrahamSiberschatz,DataBaseSystemConcepts,McGrawHill,1992
- 3. E.Turban,"DecisionSupportandExportSystemsManagementSupportSystems",Maxwell Macmillan,1998
- 4. SitausuS.Mittra,"DecisionSupportSystems-ToolsandTechniques",JohnWiley,NewYork, 19865.CycleW.HalsappleandAndrewB.Winston,"DecisionSupportSystems-Theoryand Application", Springer Verlog, New York,1987

Subject Code: BCE18OE6/B CE20OE6	G	Subject Name GEOGRAPHICAL INFORMA AND MAPPING Prerequisite: NIL				ON SYS	TEM		TY / L/ ETL	L	T/S.Lr	P/R	C
		-							Ту	3	0/0	0/0	3
L : Lecture T	: Tutor	ial SLr :	Superviso	ed Learn	ning P :	Project	R : Rese	arch C	: Credits				
T/L/ETL: Th	eory/La	ab/Embe	dded The	ory and	Lab								
env	roducin vironme	ent			-				urban/sub		etropolita	n	
COURSE OU	JTCOM	MES (COs): (3-5) On completion of the course the							dents wou	ıld have			
CO1	-	To understand the GIS, background, development an							omponents	s of GIS			
CO2	-	To study the data capturing for GIS techniques and d							haca mana	agamant			
C U 2	-	i o siudy	me data (capturin	g for GI	u uala	uase mana	igement					
CO3	-	Γo study	the analy	sis of va	arious sp	patial d	lata in GIS	S					
Mapping of (Course	Outcom	es with l	Progran	n Outco	mes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3		3		3		3		2		3		2
CO2	3		3		3		3		2		3		2
CO3	3		3		3		3		2		3		2
COs / PSOs		PSO1		PSO2		SO3		SO4					
CO1		3		3		3		3					
CO2		3		3		3		3					
CO3		3		3		3		3					
3/2/1 indicat	es stre	ngth of	correlat	ion 3 -	- High,	2 – Me	dium,	1 – Lo	W				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						V							

Subject	Subject Name	TY/	L	T/S.Lr	P/R	C
Code:	· ·	L/				
BCE18OE6/B		ETL				
CE20OE6	GEOGRAPHICAL INFORMATION SYSTEM AND	Ty	3	0/0	0/0	3
	MAPPING	,				

UNITI INTRODUCTIONTOGIS

9Hrs

Definition of GIS, Historical background Concepts and Basic Requirements. GIS Softwares Elements of GIS Cartography – definition and importance Map definition - Types Map Analysis Coordinate system Different Coordinatesystem

UNITH DATABASEMANGEMENT

9Hrs

Introduction – Types of data Spatial data – Nonspatial data. Data input - Methods Data Output - Methods Software Modules Vector data – Structure - Topology Raster data - Structure Raster data – Structure – Merits and Demerits

UNITIII DATAANALYSIS

9Hrs

Spatial data analysis Non Spatial Data analysis Manipulation – Spatial interpolation Data retrieval – Reclassification Techniques. Buffer analysis Vector and Topological Overlay analysis Raster overlay analysis Measurement - Query Record Modeling and Expert System

UNITIV DIGITALELEVATIONMODEL

9Hrs

Introduction – Data Capture Generation of DEM - Parameters Modeling Surface Applications of DEM Cost and Path analysis Digital Terrain Visualization TIN Generation DTM and DEM advantages DTM and DEM advantages

UNITY APPLICATIONOFGIS

9Hrs

Use of GIS in Resource Mapping Use of GIS in Ground Water and Runoff Modeling Use of GIS in Flood monitoring and Wetland Management. Use of GIS in Forest Management. Land use and Land cover analysis Use of GIS in Geology Use of GIS in Regional and Urban Planning Use of GIS in Agriculture andsoil Integrated with remote sensing

Total Hours: 45

TEXT BOOKS

1. AnjiReddy.M, "RemotesensingandGeographicalinformationsystem", B.SPublications, 2011.

REFERENCES

- Chestern, "Geo Informational Systems Application of GIS and Related Spatial InformationTechnologies
- 2. », ASTER Publication Co.,1992.
- 3. Jeffrey Star and John Estes, "Geographical Information System An Introduction", Prentice Hall, 1990.
- 4. Burrough .P.A, "Principles of GIS for Land Resources Assessment", Oxford Publication, 1980
- 5. SatheeshGopi, "Global Positioning System Principles and Applications," Tata McGrawHillPublishing
- 6. Company Limited, New Delhi (India),2005

Subject Code: BCE18OE7/B CE20OE7	IN		me AL POLI ANER PE			ENTION	ſ		TY / L/ ETL	L	T/S.Lr	P/R	С
	Pre	erequisite	: NIL						Ту	3	0/0	0/0	3
L : Lecture T :	Tutorial	SLr : Su	pervised I	Learning	P : Proj	ect R : R	Research	C: Cred	dits				
T/L/ETL : The	ory/Lab/	Embedde	ed Theory	and Lat)								
OBJECTIVE		ducated on complete management principles related to the Cle								~ 1.			
	educated ution	ducatedoncompletemanagementprinciplesrelatedtotheClear							uctionand	Controlin	dustrial		
		CCOMES (COs): (3-5) On completion of the course the si						students	would ha	ve			
CO1		Know the Basics of sustainable development and about preve											
CO2		Know the concept of pollution prevention and cleaner production							-				
CO3			n Life cyc	-									
Mapping of C	ourse O	utcomes	with Pro	gram O	utcomes	s (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 P	O12
CO1	3	-	-	3	3	3	3	3	2	-	-		2
CO2	3	-	-	3	3	3	3	3	2	-	-		2
CO3	3	-	-	3	3	3	3	3	2	-	-		2
COs / PSOs		PSO1]	PSO2	PS	О3	PS	O4					
CO1		3	3	3	3	3	,	2					
CO2		3	3	3	2	2	,	3					
CO3		3	3	3	3	3	,	3					
3/2/1 indicate	s streng	th of co	rrelation	3 – Hi	igh, 2 –	Mediur	n, 1 – I	Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	✓Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

Subject Code: BCE18OE7/B	Subject Name	TY / L/ ETL	L	T / S.Lr	P/R	С
CE20OE7	INDUSTRIAL POLLUTION PREVENTION AND CLEANER PRODUCTION	TY	3	0/0	0/0	3

UNIT I SUSTAINABLE DEVELOPMENT

9 Hrs

Sustainable Development-Indicators of Sustainability-Sustainability Strategies-Barriers to Sustainability-Industrial activity and Environment. Industrialization and sustainable development Industrial Ecology-Cleaner Production (CP) in Achieving Sustainability-Prevention versusControl of Industrial Pollution Environmental Policies and Legislations Regulations to Encourage Pollution Prevention and Cleaner Production-Regulatory versus Market BasedApproaches

UNITII POLLUTIONPREVENTION

9 Hrs

Definition-Importance-Historical evolution Benefits-Promotion-Barriers-Role of Industry, Government and Institutions - Environmental Management Hierarchy Source Reduction Techniques- Process and equipment optimization, reuse, recovery, recycle Raw material substitution-Internet Information and Other CP Resources.

UNITIII CONCEPT OFCLEANERPRODUCTION

9 Hrs

Overview of CP Assessment Steps and skills, Preparing for the site visit, Information Gathering, and process flow diagram, material balance, CP Option Generation Technical and Environmental feasibility analysis-Economic valuation of alternatives-total cost analysis Financing- Establishing a program-Organizing a program-preparing a program plan- Measuring progress Pollution prevention and cleaner production Awarenessplan – Waste audit-Environmental Statement

UNITIV LIFECYCLEASSESSMENT

9 Hrs

Elements of LCA-Life Cycle Costing Eco Labeling –Design for the Environment International Environmental Standards-ISO 14001- Environmental audit.

UNITY CASESTUDIES

9 Hrs

Industrial application of CP, LCA, EMS Environmental Audits.

Total Hours: 45

TEXT BOOKS

- 1. PaulLBishop, "PollutionPreventionFundamentalandPractice", McGraw-Hill International, 2009.
- 2. Prasad modak, C.Visvanathan and Mandarparasnis" Cleaner Production Audit", Environmental SystemReviews, No. 38, Asian Institute of Technology, Bangkok, 2005.
- 3. S.P.Mahajan, "PollutionControlInProcessIndustries", McGraw-HillInternational, 2005.

REFERENCES

- World Bank Group, "Pollution Prevention and Abatement Handbook-Towards Cleaner Production", WorldBankandUNEP, Washington D. C, 2005.
- 2. Arceivala, S.J., "Wastewater Treatment for Pollution Control", Tata McGraw-Hill, 2008.

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code: BCE18OE8/B CE20OE8		bject Na R POLI	ime LUTION	AND C	ONTRO) L			TY / L/ ETL	L	T / S.Lr	P/R	С
	Pre	erequisite	e: NIL						Ty	3	0/0	0/0	3
L : Lecture T :	Tutorial	SLr : Su	pervised	Learning	g P : Pro	ject R:	Researc	h C: Cı	redits	ļ		1	
T/L/ETL : The	ory/Lab/	Embedd	ed Theory	y and La	b								
TheThe	ake up to contents contents	involved involved	concepts theknowl	edgeofc edgeofh	ausesofa ealthrela	atedtoair	pollutio						
	TTCOMES (COs): (3-5) On completion of the course								its would	have			
CO1	Concepts of air pollution.												
CO2	How to estimate the quantity of air pollutant.												
CO3		Be able to develop control technologies.											
Mapping of C	ourse O	utcomes	with Pro	gram (Outcome	es (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO	.1 P	O12
CO1	3				3	3	3	3	2		3		3
CO2	3				3	3	3	3	2		3		3
CO3	3				3	3	3	3	2		3		3
COs / PSOs		PSO1	I	PSO2	PS	О3	PS	04					
CO1		3	3	3		3		3					
CO2		3	3	3		3		3					
CO3		3	3	3		3		3					
3/2/1 indicate	s streng	th of co	rrelation	1 3 – H	ligh, 2 -	- Mediu	m, 1 –	Low			<u>"</u>	1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

Subject Code: BCE18OE8/B	Subject Name	TY / L/ ETL	L	T/S.Lr	P/R	С
CE20OE8	AIR POLLUTION AND CONTROL	TY	3	0/0	0/0	3

UNITI INTRODUCTION

9 Hrs

History of Air pollution and episodes, Sources of air pollution and types,Introduction to meteorology and transport of air pollution: Global winds, Headley cells, wind rose terrestrial wind profile, Effects of terrain and topography on winds, lapse rate, maximum mixing depths, plume rise

UNITII TRANSPORTOFPOLLUTIONINATMOSPHERE 9 Hrs

Plume behavior under different atmospheric conditions, Mathematical models of dispersion of air pollutants, Plume behavior in valley and terrains. Plume behavior under different meteorological conditions, Concept of soplates

UNITIII EFFECTS OFAIRPOLLUTION

9 Hrs

Effects of Air Pollution on human beings, plants and animals and Properties. Global Effects- Green house effect, Ozone depletion, heat island, dust storms, Automobile pollution sources and control, Photochemical smog, Future engines and fuels

UNITIV AIRPOLLUTIONCONTROL

9 Hrs

Air Pollution control- at source-equipments for control of air pollution-For particulate matter-Settling chambers-Fabric filters-Scrubbers-Cyclones-Electrostatic precipitators, For Gaseous pollutants-control by absorption-adsorption-scrubbers-secondary combustion after burners, Working principles advantages and disadvantages, design criteria and examples.

UNITY AIRQUALITYSAMPLINGANDMONITORING 9 Hrs

Stack sampling, instrumentation and methods of analysis of SO2, CO etc, legislation for control of air pollution and automobile pollution

Total Hours: 45

REFERENCE:

- 1. H.CParkins, AirPollutionMcGrawHillPublication
- 2. H.S.Peavy, D.R.Row&G.Tchobanoglous, Environmental Engineering, McGraw Hill International Edition
- 3. MartinCrawford, AirPollutionControlTheory, TMHPubl.

WEB MATERIALS:

- 1. http://www.epa.gov
- 2. http://www.indiaenvironmentportal.org.in
- 3. http://nptel.iitm.ac.in
- 4. http://www.filtersource.com
- 5. https://dgserver.dgsnd.gov

OPEN LAB

Subject Code BCE18OL1/B0 20OL1	CE	ubject Name : BUILDING DRAWING PRACTICI SING AUTOCADD						TICE	Ty/Lb /ETL	L	T / S.Lr	P/R	С
	Pr	erequisite:	Basic E	Engineering	g Grap	hics			Lb	0	0/0	3/0	1
L : Lecture T	: Tutori	al SLr : Su	pervise	d Learning	g P : Pr	oject F	R : Resea	arch C:	Credits				
T/L/ETL : The	eory/La	b/Embedd	ed Theo	ory and Lal	b								
OBJECTIVE													
		nestudentstodrafttheplan,elevationandsectionalviews andcontrolrulessatisfyingorientationandfunctionalre										g	
	JTCON	MES (COs): (3-5) At the end of the course, the students						student	t will be ab	le to:			
CO1		know about the basic principles of Building Drawing											
CO2	k	know Basic commands of a popular drafting package					age						
CO3	4	Acquire knowledge on plan, elevation and section of buildings											
Mapping of C	Course	Outcomes	with P	rogram O	utcom	es (PC)s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO1	0 PO1	1 P	O12
CO1	3					2		2			2		
CO2	3							2			2		
CO3	3					2		2			2		
COs / PSOs	P	PSO1	P	SO2	PS	03	PS	04					
CO1		3		3	3	3		3					
CO2		3		3	(1)	3		3					
CO3		3		3	3			3					
3/2/1 indicate	es strei	ngth of co	rrelatio	on 3 – H	igh, 2	– Med	dium, 1		W	1			
Cate	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
		√											

Subject Code: BCE18OL1/BCE 20OL1	Subject Name :	Ty/Lb /ETL	L	T / S.Lr	P/R	С
	BUILDING DRAWING PRACTICE	Lb	0	0/0	3/0	1
	USING AUTOCADD					

LIST OF EXPERIMENTS

- 1. Learn and use basic AutoCAD commands manage drawing using layers, colour and line types-completebasiccaddrawings, withborders, textand dimensions-use and dittext and text styles—Method of scales invarious drawing-understand and the use of blocks.
- 2. Developmentoflineplanforresidentialbuilding.oneforsinglestoriedbuilding
- 3. Developmentoflineplanforresidentialbuilding.onefortwostoriedbuilding
- 4. Submission drawing for residential building including its planning and with area and parkingstatements and allother details as perthenorms and local by e-laws.
- 5. Industrial buildings with rooftruss.
- 6. Todrawthe3Dviewofresidentialbuilding.

Total Hours: 30

TEXT BOOKS

- CivilEngg.Drawing&Houseplanning– B.P. Verma, Khannapublishers, Delhi, 1990
- 2. Buildingdrawing&detailing— Dr.Balagopal&T.S.Prabhu,Spadespublishers,Calicut,1989.

REFERENCES

- 1. 1.Buildingdrawing–Shah, TataMcGraw-Hill, NewDelhi, 2000.
- 2. 2.Building planning & drawing Dr. N.Kumaraswamy, A.Kameswara Rao, Charotarpublishing house.Mumbai,1997.
- 3. Shah, Kaleand Patki, Building drawing, Tata McGraw-Hill New Delhi, 1998.

Tv/

T,

T/S.Lr P/R C

Subject Code:

Subject Code BCE18OL2/B 20OL2	G	EOGRA	t Name : RAPHICALINFORMATIONGLAB				ΓEMAN	ID	Ty/ Lb/ ETL	L	T/S.Lr	P/R	C
		rerequisit							Lb	0	0/0	3/0	1
L : Lecture T :	: Tutori	ial SLr : S	upervised	l Learnii	ng P : Pr	oject R	: Resear	ch C: (Credits				
T/L/ETL: The	eory/La	ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE	: :												
• Data an	nalyses	and data	output cap	pabilities	of a sta	ındard G	SISsoftw	are.	ıt,datastora				
COURSE OU	JTCON								will be able	e to:			
CO1			out the ba					gу					
CO2		know Basic commands of a onscreen digitilization											
CO3			knowledg										
CO4		se able to	-		-		-						
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO1	0 PO1	1 P	O12
CO1	3					2	2						
CO2	3					2	2						
C03	3					2	2						
C04	3					2	2						
COs / PSOs		PSO1		PSO2	PS			SO4					
CO1		3		3		3		3					
CO2		3		3		3		3					
C03		3		3		3		3					
C04	<u> </u>	3	-	3	`	3		3					
3/2/1 indicate	es stre	ngth of c	orrelatio	n 3-1	High, 2	– Medi	um, 1 -	– Low	1	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

Subject Code: BCE18OL2/BCE2	Subject Name :	T y/ Lb/ ETL	L	T / S.Lr	P/R	C	
0OL2	GEOGRAPHICALINFORMATIONSYSTEMAN D MAPPINGLAB	Lb	0	0/0	3/0	1	

LIST OF EXPERIMENTS

- 1. Digitization Point, Line, Polygon and SurfaceData
- 2. Buildingtopology-measuringdistanceandarea
- 3. Addingattributedata-queryingonattributedata
- 4. Onscreen digitization Data Conversion Vector to Raster, Rasterto Vector
- 5. Generation of DEM: from contours, spotheights
- 6. Vector Analysis Buffering, Overlay and Networkanalysis
- 7. Data Output: Bar charts, Mapcompilation

Total Hours: 30

REFERENCES

- 1. QGIS-1.8-UserGuide, http://docs.qgis.org/pdf/QGIS-1.8-UserGuide-en.pdf, http://docs.qgis.org/pdf, http://docs.qgis.org/pdf, http://docs.qgis.org/pdf, http://docs.qgis.org/pdf, http://docs.qgis.org/pdf, <a href="http://docs.qgis.org/pdf"
- 2. Getting to Know ArcGIS for Desktop, ISBN: 97815894830882013
- 3. Understanding GIS: An ArcGIS Project Workbook, ISBN: 97815894824252011

Subject Code: BCE18OL3/BC OL3		Subject	t Name :]	ENGIN	ONMEN' REERING RATORY	Ĵ			Ty/Lb /ETL	L	T / S.Lr	P/R	С
	Pre	requisite	: None						Lb	0	0/0	3/0	1
L : Lecture T :	Tutorial	SLr : Sup	pervised L	earning I	P : Projec	t R : Res	search C:	Credits	T/L/ETL	:		l	
Theory/Lab/En	nbedded '	Theory a	nd Lab										
• Toimpar		lgeonpre	parationof	reagents	testingv;	ariouswa	terandwa	astewate	rqualitypa	rameters.			
COURSE OU													
CO1	T	ogethand	-onexperi	enceinthe	eoperatio	nofequip	mentslik	epHmet	er,TDSme	ter,turbic	itymeter,		
CO2		Togethand-onexperienceintheoperationofequipmentslikepHmeter,TDSmeter,turbiditymeter, etc. To analyze water and wastewater volumetrically and using certain equipments											
CO3	T	The students completing the course will be able to characterize wastewater and conduct treatability studies.											
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 I	PO12
CO1	3	3	2		3		3	3	2		2		
CO2	3	2	2		3		3	3	2		2		
CO3	3	2	2		3		3	3	2		2		
COs / PSOs		PSO1]	PSO2	PS	O3	PS	SO4					
CO1		3	,	3		3		3					
CO2		3	-	3		3		3					
CO3		3	,	3		3		3					
3/2/1 indicate	s strengt	th of cor	relation	3 – Hig	$\frac{1}{\sinh, 2-N}$	ledium,	1 – Lov	W					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

Subject Code: BCE18OL3/BCE2 0OL3	Subject Name :	Ty/Lb /ETL	L	T / S.Lr	P/ R	С
	ENVIRONMENTAL ENGINEERING LABORATORY	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. a) Determination of pH.
 - b) Determination of Turbidity.
- 2. Determination of Hardness.
- 3. Determination of
- 4. Alkalinity.
 - Determination of ResidualChlorine.
- 5. Estimation of Chlorides.
- 6. Estimation of AmmoniaNitrogen.
- 7. Estimation of Sulphate.
- 8. Determination of optimum coagulant dose.
- 9. Determination of specific conductivity.
- 10. Estimation of available chlorine in Bleaching Powder.
- 11. Determination of dissolved Oxygen.
- 12. Determination of suspended settleable, volatilea ndfixed solids
- 13.B.O.D.Test.

14.C.O.D.Test.

REFERENCE BOOKS

- 1. Trivedi and Goel Chemical and biological methods for waterpollution studies. New Delhi,2000.
- 2. A course Manual Water and wastewater analysis. National Environmental Engineering Research Institute. Nagpur publication.

Total Hours: 30

OPEN ELECTIVE CHEMICAL DEPARTMENT:

Subject C		Su	bject N	ame : Fu	ndame	ntals of	Nanosc	ience	T y/ Lb	ETL	L	T/S.Lr	P/R	C	
BCT18OI CT20OE		Pr	erequis	ite: Nano	materi	al			Ty		3	0/0	0/0	3	
L : Lectur		rial	SLr : Su	ipervised	Learnin	ng P : Pr	oject R	: Resea	rch C:		<u> </u>				
Credits T/	L/ETL :	Theory	/Lab/Er	nbedded	Theory	andLab									
OBJECT			_			_		_		_					
• To COURSE					it basis o	of nanor	naterial	science	, prepara	ation me	thod, t	ypes anda <u>ı</u>	plication	n.	
CO1				ut the sci	ence of	nanoma	terials								
CO2				edge in cl				al							
CO3		•		e prepara											
			Outcomes with Program Outcomes (POs)												
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) PO1	1 PC)12	
COS/1 OS		101	102	103	104	103	100	107	100	109	101		1 10	112	
CO1		2	3	-	-	-	-	2	-	-	-	-	-		
CO2		2	3	3	-	-	-	-	-	-	1	-	3		
CO3		3	3	3	-	1	-	-	-	-	-	-	-		
COs / PSO	Os	PSO1		PSO2	1	PSO3		PSO4							
CO1		2		2		2		-							
CO2		3		1		3		-							
CO3		3		1		3		-							
/2/1 indica	ates stre	ngth of	f correl	ation 3	– High,	2 – Me	dium, 1	l – Low	7						
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
							√								

Subject Code:	Subject Name	T y/ Lb/ ETL	L	T/S.Lr	P/R	С	
BCT18OE1/B CT20OE1	Fundamentals of Nanoscience	Ty	3	0/0	0/0	3	

UNITI INTRODUCTION

9Hrs

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nanoparticles- quantum dots, nanowires-ultra-thinfilms- multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNITII GENERAL METHODSOFPREPARATION

9Hrs

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNITIII NANOMATERIALS

9Hrs

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2, MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays functionalization and applications-Quantum wires, Quantum dots- preparation, properties and applications.

UNITIV CHARACTERIZATIONTECHNIQUES

9Hrs

xray diffraction technique, Scanning Electron Microscopy – environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA,SIMSNanoindentation.

UNITY APPLICATIONS

9Hrs

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging – Microelectro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.

Total Hours: 45

TEXT BOOKS:

- 1.A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
- 2.N John Dinardo, "Nanoscale charecterisation of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH,2000

REFERENCES:

- 1.G Timp (Editor), "Nanotechnology", AIP press/Springer,1999.
- 2. Akhlesh Lakhtakia (Editor), "The Hand Book of NanoTechnology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code:	Subjec	t Name	: Electro	chemica	Engine	eering		Ty / ETI		L	T/SLr	P/R	C
BCT18OE2/B CT20OE2	Prereq	uisite: N	Moral sci	ence and	l genera	al Englis	sh	Ту		3	0/0	0/0	3
L : Lecture T:Te T/L/ETL : Theo			upervised d Theory		•	oject R :	Researc	ch C:Cre	dits				
associat	ted envir	onmenta	lissues	roductio	n, storaș	ge, distri	bution a	nd utiliza	ation of e	lectroch	emical en	ergy an	d tl
engine	nt would eering de idents co	be able sign and	to integra problem the cours	solving a e will be	and unde able to c	erstand t character	he impa	ct of thes	e factors	on globa	electroch al energy osion		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	-	-	1	-	2	-	-	-	-	-		1
CO2	2	-	-	2	-	_	-	-	-	3	-		-
COs / PSOs		PSO1		PSO2		PSO3		PSO4					
C O 1		3		2		-		-					
CO2		2		1		-		-					
3/2/1 indicates	strength	of corr	elation :	3 – High	, 2 – Mo	edium,	1 – Low	,	1	T			
Category	Basic Sciences	Engineering Sciences	Humanities and SocialSciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						√							

Subject Code:	Subject Name	Ty / Lb/	L	T/SLr	P/R	C
BCT18OE2/B		ETL				
CT20OE2	Electrochemical Engineering	Ту	3	0/0	0/0	3

UNITI 9Hrs

Review basics of electrochemistry: Faraday's law -Nernst potential –Galvanic cells – Polarography, The electrical double layer: It's role in electrochemical processes –Electro capillary curve –Helmoltz layer –Guoy –Steven's layer –fields at the interface.

UNITII 9Hrs

Mass transfer in electrochemical systems: diffusion controlled electrochemical reaction —the importance of convention and the concept of limiting current. Over potential, primary-secondary current distribution —rotating discelectrode.

UNITIII 9Hrs

Introduction to corrosion, series, corrosion theories derivation of potentialcurrent relations of activities controlled and diffusion controlled corrosion process. Potential-pH diagram, Forms of corrosion- definition, factors and control methods of various forms of corrosion-corrosion control measures industrial boiler water corrosion control –protective coatings –Vapor phase inhibitors –cathodic protection, sacrificialanodes

-Paint removers.

UNITIV 9Hrs

Electro deposition –electro refining –electroforming –electro polishing –anodizing –Selective solar coatings, Primary and secondary batteries –types of batteries, Fuel cells.

UNITV 9Hrs

Electrodes used in different electrochemical industries: Metals-Graphite –Lead dioxide –Titanium substrate insoluble electrodes –Iron oxide –semi conducting type etc. Metal finishing-cell design.types of electrochemical reactors, batch cell, fluidized bed electrochemical reactor, filter press cell, Swiss roll cell, plug flow cell, design equation, figures of merits of different type of electrochemical reactors.

TotalHours:45

TEXTBOOKS:

Eckenfelder, W. W, Jr. "Industrial Water Pollution Control" McGraw-Hill: New York, 1966.

- 1. P. L. Ballaney, "Thermal Engineering", Khanna Publisher New Delhi, 1986.
- 2. Perry R. H. Green D. W. "Perry's chemical Engineer's Handbook", McGraw Hill, New York, 2007.

REFERENCES:

1. P. N. Ananthanarayan, "Basic Refrigeration & Air conditioning", Tata McGraw Hill, New Delhi, 2007

Subject Code: BCT18OE3/B	Subject System		Alternat	tive Fue	ls And I	Energy		Ty/	Lb/ ETL	L	T/SLr	P/R	С
DC118UES/D	Prereq	uisite: N	Aoral scie	ence and	l genera	al Englis	sh	Ty		3	0/0	0/0	3
CT20OE3													
L : Lecture T:Tu	ıtorial	SLr : S	upervised	Learnin	g P : Pro	oject R:	Researc	h C:Crec	lits				<u> </u>
T/L/ETL : Theor	ry/Lab/E	mbedde	d Theory	and Lab									
OBJECTIVE:													
To knov	v about t	he types	of alterna	itive fue	ls and er	nergy so	urces for	ICengin	ies.				
COURSE OUT	COMES	S (COs)	: (3-5)										
performetc.,	nance ch	aracteris	stics, com	bustion (characte	ristics, e	emission	characte	ative fuels ristics, eng				
CO2 Students	s can abl	e to und	erstand ho	e to use	hydroge	en,]vege	table oils	s as fuels	3				
Mapping of Co	urse Ou	tcomes	with Prog	gram Ou	itcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
		102	103	104	103		107	100	10)	1010	1011	10	14
CO1	3	-	-	1	-	2	-	-	-	-	-		1
CO2	2	-	-	2	-	-	-	-	-	3	-		-
COs / PSOs	PS	O 1	PSO	02	PS	O3	PS	O4					
CO1		3	2	2		-	-						
CO2		2	1	1		-	-						
3/2/1 indicates	strength	of corr	elation 3	8 – High	, 2 – Me	edium,	1 – Low		<u> </u>			·	
			Ş					1					
Category	Basic Sciences	Engineering Sciences	Humanities and SocialSciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						√							

Subject Code:	Subject Name:	Ty / Lb/ ETL	L	T/SLr	P/R	C
BCT18OE3/B						
	Alternative Fuels And Energy Systems	Ty	3	0/0	0/0	3
CT20OE3						

UNIT I: ALCOHOLS AS FUELS

9Hrs

Introduction to alternative fuels. – Need for alternative fuels – Availability of different alternative fuels for SI and CI engines. Alcohols as fuels. Production methods of alcohols. Properties of alcohols as fuels. Methods of using alcohols in CI and SI engines. Blending, dual fuel operation, surface ignition and oxygenated additives. Performance emission and combustion characteristics in CI and SI engines.

UNIT II: VEGETABLE OILSASFUELS

9Hrs

Various vegetable oils and their important properties. Different methods of using vegetable oils engines – Blending, preheating Transesterification and emulsification of Vegetable oils – Performance in engines – Performance, Emission and Combustion Characteristics in dieselengines.

UNIT III: HYDROGEN ASENGINEFUEL

9Hrs

Production methods of hydrogen. Combustive properties of hydrogen. Problems associated with hydrogen as fuel and solutions. Different methods of using hydrogen in SI and CI engines. Performance, emission and combustion analysis in engines. Hydrogen storage – safety aspects of hydrogen.

UNIT IV: BIOGAS, NATURAL GAS AND LPGASFUELS

9Hrs

Production methods of Biogas, Natural gas and LPG.Properties studies. CO2 and H2S scrubbing in Biogas., Modification required to use in SI and CI Engines- Performance and emission characteristics of Biogas, NG and LPG in SI and CI engines.

UNIT V: ELECTRIC, HYBRID AND FUELCELLVEHICLES

9Hrs

Layout of Electric vehicle and Hybrid vehicles – Advantages and drawbacks of electric and hybrid vehicles. System components, Electronic control system – Different configurations of Hybrid vehicles. Power split device. High energy and power density batteries – Basics of Fuel cell vehicles.

TEXT BOOK: Total Hours:45

1. Ayhan Demirbas, 'Biodiesel A Realistic Fuel Alternative for Diesel Engines', Springer- Verlag London Limited 2008.

REFERENCES:

- 1. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, The Biodiesel Handbook, AOCS Press Champaign, Illinois 2005.
- 2. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers, 1997 ISBN 0-76-80-0052-1.
- 3. Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogasetc.).
- 4. Science direct Journals (Biomass & Bio energy, Fuels, Energy, Energy conversion Management, Hydrogen Energy, etc.) onbiofuels.
- 5. Devaradjane. Dr. G., Kumaresan. Dr. M., "Automobile Engineering", AMK Publishers, 2013.

Subject	Code:	Subject	t Name:	Petroche	emical U	J nit Pro	cesses		Ty /	Lb/ ETL	L	T/SLr	P/R	C		
BCT18	OE4/B	Prereq	uisite: N	Aoral scie	ence and	l genera	l Englis	h	Ty		3	0/0	0/0	3		
CT20O	E4															
	ure T:Tu			upervised		-	oject R:	Research	h C:Cre	dits	1					
		ry/Lab/E	mbedde	d Theory	and Lab											
OBJEC		m and co	nduct e	xneriment	s and an	alvze an	d intern	ret data r	elated to	petrochei	nical I	Inithroces	cec			
		COMES			s and an	aryze an	u merp	ret data r	ciated to	petrocher	incar (3 Intproces	303.			
CO1	Studen	ts would	be able	to unders	tand the	principl	es of vai	rious uni	t proces	ses in the p	etrocl	nemical inc	lustry.			
CO2	Students	s will abl	e to und	erstand tl	ne produ	ction of	steam re	eforming	of Natu	ıral gas						
Mappin	g of Co	urse Out	tcomes	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1		3	- 1 - 2 -							-	-	-	1			
CO2		2	-	-	2	-	-	-	-	-	3	-	-			
COs / P	PSOs	PS	O 1	PSO)2	PS	О3	PS	O4							
CO1		3		2		-		-								
CO2		2		1		-		-								
3/2/1 in	dicates s	strength	of corr	elation 3	– High	, 2 – Me	edium,	1 – Low		L L			I			
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and SocialSciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
							√									

Subject Code:	Subject Name:	Ty / Lb/ ETL	L	T/SLr	P/R	C
BCT18OE4/B	Petrochemical Unit Processes	Ту	3	0/0	0/0	3
CT20OE4						

UNITI FEED STOCK AND SOURCEOFPETROCHEMICALS

9Hrs

Overview of Petrochemical Industry – The key growth area of India, Economics – Feed stock selections for Petrochemicals – Steam cracking of Gas and Naphtha to produce Olefins, Diolefins and Production of Acetylene – Cracker product separation and BTX separation.

UNITH SYNTHESISGASPRODUCTION

9Hrs

Steam reforming of Natural gas – Naphtha and Heavy distillate to produce Hydrogen and Synthesis gas – Production of Methanol – Oxo process.

UNITIII UNITPROCESSES I

9Hrs

Fundamental and Technological principled involved in Alkylation – Oxidation – Nitration and Hydrolysis.

UNITIVUNITPROCESSESII

9Hrs

Fundamental and Technological principled involved in Sulphonation, Sulfation and Isomerisation.

UNITY UNITPROCESSESIII

9Hrs

Fundamental and Technological principles involved in Halogenation and Esterification

Total Hours:45

TEXT BOOKS:

- 1. Bhaskara Rao, B.K., "A Text on Petrochemicals", Khanna Publishers, 2000.
- 2. Sukumar Maiti, "Indroduction to Petrochemicals", 2nd Edition, Oxford and IBHPublishers, 2002.

REFERENCES:

- 1. Margaret Wells, "Handbook of Petrochemicals and Processes", 2nd Edition, Ash GatePublishing Limited, 2002.
- 2. Sami Matar, and Lewis F. Hatch., "Chemistry of Petrochemical Processes", 2nd Edition, Gulf Publishing Company, 2000.
- 3. Dryden, C.E., "Outlines of Chemical Technology", 2nd Edition, Affiliated East-WestPress, 1993

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject	t	Subjec	t Name	: Princip	les of De	esalinati	on Tech	nologies	Ty/	Lb/ ETL	L	T/SLr	P / R	C	
Code:		Prereq	uisite:	Moral sc	ience a	nd gene	eral En	glish	Ty		3	0/0	0/0	3	
DCT10	OE <i>51</i>														
BCT18	OE5/														
BCT20	OE5														
L: Lect	ure T:T	utorial	SLr:	Supervis	ed Lear	ning P :	Project	R : Res	earch C	:Credits					
T/L/ET	L: Theo	ory/Lab/	Embedo	ded Theor	ry and L	ab									
										orrelate the					
practica	ıl applıca	atıons, L	Learn to	select the	e right ty	ype of c	lesalınat	ion syst	em for a	given loc	atıon	and purpo	ose.		
				s):(3-5											
CO1	Unders	stand the	e releva	nce and n	eed for	desalin	ation								
CO2	Learn	the scier	nce behind desalination												
-				ce bennit desannation											
Mappir	ng of Co	ourse O	Outcomes with Program Outcomes (POs)												
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO11	PO	12	
CO1		3	-	-	1	-	2	-	-	-	-	-	1		
CO2		2	-	-	2	-	-	-	-	-	3	-	-		
COs / F	PSOs	PS	SO1	PS	O2	PS	SO3	PS	604						
CO1		3		2		-		-							
CO2		2		1		-		-							
3/2/1 in	dicates	strengt	h of cor	relation	3 – Hi	igh, 2 –	Mediu	m, 1 – l	Low						
		-		Γ		8, -	I					<u> </u>			
Catego	ory	Basic Sciences Engineering Sciences Humanities and SocialSciences Program Core Program Core Open Electives						Practical / Project	Internships / Technical Skill	Soft Skills					
							√								

Subject Code:	Subject Name:	Ty / Lb/ ETL	L	T/SLr	P/R	C
BCT18OE5/B						
CT20OE5	Principles of Desalination Technologies	Ty	3	0/0	0/0	3

UNITI:INTRODUCTION 9Hrs

Water Scenario around the world and India – need and relevance of desalination - water sources for desalination – typical seawater composition – brackish water compositional changes- contaminants: anthropogenic and geogenic- drinking water standards – WHO and Indian Standards – Mineral Water standards (indian). Desalination –meaning and description – relation to natural components of desalination - general descriptionminimum energy requirement – review of fundamentals of physical chemistry aspects relevant to desalination, solution properties – estimating the minimum energy requirement – based concept of de-mixing – exergy - estimation from colligative properties – Performance assessment parameters for desalination for thermal and membrane. Different types of Desalination techniques basic resources required for desalination – energy options – relative characteristics of different types of energy options.

UNIT II: MEMBRANEDESALINATION

9Hrs

General features of Pressure Driven Membrane Processes – classification –Micro-filtration(MF) Ultrafiltration (UF), Nano-Filtration (NF) – pore-size – performance relationship. Pretreatment System – Need and relevance – different unit operations including membrane pretreatment (UF) – scaling calculations – dosing systems – treated water quality monitoring – SDI concept. Reverse Osmosis – basic principle – characteristics of membranes used – Nano-filtration – basic principle – comparative features of NF and RO – concentration polarization – transport mechanism and equations (no derivation required)- energy recovery. Performance characteristics of Reverse Osmosis and Nano-filtration – solute rejection - recovery- water flux – relationship amongst them –effect of temperature – performance of lab experiments – interpretation of lab data.- application of RO and NF for desalination.

UNIT III: THERMALDESALINATION

9Hrs

Basic Components of thermal Desalination – Heat Source – Sensible heat vs latent heat for use in desalination – features of isothermal and adiabatic processes. Thermodynamic properties – pressure vs temperature for steam, change of latent, Cp and BPE with temperature. – corrosion of materials and normal material of construction. Description of Flashing and Boiling: single effect evaporation and flashing – Need for multiple effects / stages – accessories for thermal desalination – ejectors – demisters - vacuum systems – pretreatment systems – Pumps. Principles of MSF/ MED: MED with TVC and MVC: Basic design considerations for thermal systems – operational features.

UNIT IV:NON CONVENTIONAL DESALINATION SYSTEMS

9Hr

Membrane based Systems :Electrodialysis, Membrane. Distillation, Forward Osmosis.- Basic Principles – performance characteristics – Energy requirements – Challenges. Low temperature thermal desalination including ocean thermal energy and waste heat – Solar desalination including solar stills, solar thermal and solar photovoltaic– limitations and advantages. Hybrid Desalination systems, combined power and water dual purpose plants – examples of working desalination plants.

UNIT V: SOCIETAL, COMMERCIAL, ECONOMICS AND ENVIRONMENTAL ASPECTS 9Hrs
Selection of Desalination System – considerations based on capacity – local resources (including power, water etc.)—
ultimate use—scale up – brackish water systems – considerations for societal cause / industrial water recycle. Economic
Aspects of esalination – water cost calculation—capital cost/operating costs – feasibility analysis- Environmental issues –
challenges – spent membrane, disposal- discharge concentrated stream – use of concentrate stream – recovery of values.

REFERENCE BOOKS:

Total Hours:45

1 Fundamentals of Salt Water Desalination: Hisham T. El-Dessouky and Hisham M. Ettouney, ISBN:978-0-444-50810-2 Elsevier(2009)

2 A Desalination Primer: Introductory Book for Students and Newcomers to Desalination :K.S.Spiegler and Y.M. El-Sayed, ISBN 086689 034 3, Desalination Publications Elsevier(1994)

3 Kirk & Othmer : Encyclopaedia of Chemical Technology

Subject BCT1	et Code		bject N	ame : Pip	oing Des	ign Eng	gineerir	ıg	T y/ Lb/	ETL	L	T/S.Lr	P/R	C
CT200		Pr	erequis	ite: Nil				ı	Ty		3	0/0	0/0	3
L : Lectu	re T:Ti	utorial	SLr:	Supervise	d Learni	ng P : F	Project F	R : Resea	arch C:					
Credits T	'/L/ETI	L: Theo	ory/Lab/l	Embedde	d Theory	andLal	b							
OBJEC														
												sound tech pace thro		aad
	sts.	se and p	nowess	iii iiistaiia	поп от р	iping ca	ın neip	iii execu	ung pro	jecis ai a	i iastei	pace uno	ugmedu	ceu
		COME	ES (COs): (3-5)										
CO1	Sune	rvisina	team of	designers	and eno	ineers t	o evecu	te ninin	g work a	c well a	s checl	king variou	ıs detaile	c
<i>,</i> 01	relate	_	tcaiii oi	designers	and eng	,incers t	o caccu	te pipin	g work a	is well a	s check	xing variou	as actain	
				its thickr										
CO2		•	ll in Wo	rk analysi	s and ma	iterial n	nanagen	nent that	t could h	elp in ef	ficient	managem	ent of a	n
Mapping		prise. ourse O	utcomes	with Pro	ogram ()	utcom	es (POs)						
PP-118	,						-2 (2 00	,						
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11 PC)12
CO1		-	-	2	1	-	-	3	-	2	3	-	2	
CO2		2	-	-	2	-	-	2	-	-	3	2	1	
COs / PS	SOs	P	SO1	PSC)2	P	SO3	P	SO4					
CO1			2		2		2		-					
CO2			3		1		3		-					
2/1 indi	cates st	trength	of corr	elation 3	3 – High	$\frac{1}{2-M}$	edium,	1 – Lo	W		1		<u> </u>	
									Π					
			es es	ial					Skill					
		ses	enc	Soc	re	ives	'es	ject	ical					
		ienc	Sci	nd t	Co	Ject	ctiv	Pro	chn	Soft Skills				
		Sc	ing	ities and Sciences	ram	m E	Ele	al/	/ Te	ft SI				
	о >	Basic Sciences	Engineering Sciences	miti Sc	Program Core	Program Electives	Open Electives	Practical / Project	ips ,	Soz				
		- ~		13	Д.	7ro	0	Pra	nsh:					
	Cate gory	Ш	ngu			<u> </u>								
	Cat gor		Eng	Humanities and Soci Sciences					nter					
	Cat gor	Щ	Eng	Hun		П			Internships / Technical					
	Cat		Eng	Hun		H	V		Inter					

Subject Code: BCT18OE6/B	Subject Name :	T y/ Lb/ ETL	L	T/S.Lr	P/R	C
CT20OE6	Piping Design Engineering	Ту	3	0/0	0/0	3

UNITI INTRODUCTION TOPIPINGENGINEERING

9Hrs

Fluid flow, types of fluids and examples, different pipe fittings. Friction factor, pressure drop for flow Newtonian and non-Newtonian fluids, pipe sizing, economic velocity. Pipe line networks and their analysis for flow in branches, restriction orifice sizing. Pressure drop calculations for non-Newtonian fluids. two phase flow, types of two phase flow, two phase flow as encountered in piping for steam, distillation column, pressure drop, vibrations in two phase flow.

UNITH MATERIALSFORPIPING

9Hrs

Selection of material for piping, desirable properties of piping materials, materials for various temperature and pressure conditions, materials for corrosion resistance. Common ASTM and IS specifications for: Seamless / ERW pipes, pipe fittings, flanges, and fasteners, materials for valves. Gaskets: Functions and properties, types of gaskets and their selection.

UNIT III CONTROL & SAFETYINPIPING

9Hrs

Types of valves, control valves, safety valves, constructional features, criteria for selection. Piping components, pressure relieving devices, constructional features, selection criteria and application, safety features. Calculations for line sizing, steam traps, P.R.V. & condensive systems.

UNITIV PIPINGSYSTEMDESIGN

9Hrs

Design principles, calculation of pipe diameter, thickness, important system characteristics and design principles related to steam flow at high and low pressures. Design principles and line sizing for vacuum pipelines, slurry pipelines, surge drums and flare stacks, vacuum devices including ejector system. Considerations governing pump selection, analysis of system and pump characteristics in connection with series, parallel flow, and minimum flow and equalizing lines, NPSH, allowable nozzle loads in various codes. Design principles and line sizing of pneumatic conveying of solids, components of conveying systems, dust and fume extraction systemsprinciples.

UNITY INSULATION AND COSTINGOFPIPING

9Hrs

Purposes of thermal insulation, principles of conductive and convective heat transfer to the extent of application to heat loss / gain through bare pipe surfaces. Critical thickness of insulation, estimating thickness of insulation, optimum thickness of insulation. Insulation for hot and cold materials and their important properties, insulation material selection criteria, typical insulation specification – hot and cold materials. Introduction to P & I Diagrams, Process flow diagrams, standard symbols and notations. Introduction to various facilities required guidelines for Plot Plan / Plant Layout. Introduction to equipment layout, piping layout, piping isometrics and bill of material. Typical piping system layout considerations for following systems: (i) Distillation columns andheatexchangers, (ii) Reactors, (iii) Piperacks, (iv) Storagetanks, (v) Pumps

Total Hours: 45

REFERENCE BOOKS.

- 1. Piping Design Handbook by John J. Mcketta, by Marcel Dekker, Inc, NewYork.
- 2. Process plant layout and piping design by Ed Bausbacher & Roger Hunt (PTK Prentice HallPublication)
- 3. Piping Handbook, Edited by Mohinder Nayyar, McGraw-HillEducation
- 4. Pipe Drafting and Design by Roy A Parisher & Robert A. Rhea. ASME Codes31

	ct Code 80E7/		ıbject N	ame : E-	Waste l	Manager	nent		T y/ Lb	ETL	L	T/S.Lr	P/R	C
CT200		Pr	erequis	ite: Nil					Ty		3	0/0	0/0	3
L : Lectu Research				: Supervise: Theory/		_			b		<u> </u>			
	o secure											the sound		
COURS	E OUT	COM	ES (CO	os): (3-5	5)									
CO1	relate	ed to		f designer		engineer	s to exe	cute pip	oing wor	k as wel	ll as ch	ecking va	rious de	tails
CO2 Mapping	Deve	lop ski prise.	ll in Wo	ork analys	sis and				hat could	d help in	n efficio	ent manag	gement	of an
COs/PO		PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10) PO1	1 PO	12
CO1			2		1			2			2			
CO1 CO2		2	3	-	2	-	-	3	-	-	3			2
	70					-	- DCO2	2	- DCO 4	_	3	3		1
COs / PS	SOS		PSO1		PSO2		PSO3		PSO4					
CO1 CO2			3	2			3							
	cates st	trengtl						 n. 1 – 1	Low					
2 /1 III	cutes st	or congre	01 001		U 111	·8, -	.,100101	., .	2011					
		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Sof t t				
;	Category						1							

Subject Code: BCT18OE7/B	Subject Name	T y/ Lb/ ETL	L	T/S.Lr	P/R	C
CT20OE7	E-Waste Management	Ту	3	0/0	0/0	3

UNITI INTRODUCTION

6Hrs

Composition – e-waste generation in global context – growth of electrical and electronic industry- Environmental concerns.- Effects on Environment and Human Health.

UNITITHEBASELCONVENTION

12Hrs

Compliance and implementation- Scheme to control the movement of hazardous waste - Technical assistance offered by the Convention -Other important highlights of the Basel Convention - Waste Electrical and Electronic Equipment (WEEE)- Obligations of the producer under the WEEE.

UNITIII MANAGEMENTE-WASTE

9Hrs

Hazardous waste isolation- Guidelines for environmentally sound management- compliance and implementation – inventory management- reduction- process modification- volume reduction- recovery and reuse- Concerns/ Challenges for e-waste management

UNITIV RECYCLINGE-WASTE

12Hrs

Global trade in hazardous waste - Rising illegal e-waste exports - Main factors in global waste trade economy Waste trading as a quintessential part of electronic recycling - Free trade agreements as a means of waste trading Import of hazardous e-waste - Porous ports and lack of checking facilities - Illegal waste imports seized in ports

UNITY RECOMMENDEDOPTIONS

6Hrs

Creating awareness-Training for the management and minimization of hazardous wastes –sustainable product design –role of government – Responsibility of Industries and public.

Total Hours: 45

REFERENCES:

- 1. K. Satyamurty, 'Managing e-waste without harming environment', The Hindu, 03 April,2006.
- 2. Marwaan Macan- Markar, 'Free Trade Cannot Include Toxic Waste', Toxic Trade News, Basel Action Network (BAN), February, 2007.
- 3. Freeman M. H. 1989. Standard Handbook of Hazardous Waste Treatment and Disposal, McGraw-Hill Company.

OPEN ELECTIVE- ELECTRICAL AND ELECTRONICS ENGINEERING

Subject Code: BEE18OE1	/		ct Nan ELEC		AL S	AFE?	ГҮ ГО	R ENC	SINEE	RS	T /L/ ETL	L	T / S.Lr	P/ R	С
BEE20OE1		Prere	quisite	:							T	3	0	0	3
L : Lecture	T:Tu	torial	SLr:	Super	vised	Leari	ning P	: Projec	t R : R	esearch	C: Cred	lits		1	1
T/L/ETL: T		ry/Lab/l	Embed	ded Th	eory	andLa	ab								
OBJECTIV															
		knowle													
		about th				etrica	Safety	yEquipi	nents						
		about th about tl				odos									
		he stude					Or								
COURSE						ammi	5.								
CO1						ne bas	sics of	Electric	al Safe	ty					
CO2								Safety		•					
CO3		Know	owledge on the safety procedures												
CO4		Famil	iarity o	n the e	lectric	cal sa	fety co	des							
CO5		Abilit	y to bed	come c	onsul	tant a	nd to a	ttend th	ne Vend	lors.					
Mapping of	f Co	urse Ou	ıtcome	s with	Prog	ram	Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12
CO1		3	2	1	,	2	1	3	3	2	2	1	2		2
CO2		3	3	1	,	2	2	3	3	3	2	2	3	3	3
CO3		2	2	2	,	3	1	2	2	2	3	2	2	2	1
CO4		3	1	3	1	2	2	1	1	1	1	3	1		2
CO5		1	2	2		1	3	2	2	2	2	2	2	2	2
Cos / PSOs		PS	501	P	SO ₂		PS	03	P	SO4					
CO1			3		2			2		2					
CO2			3		2			2		2					
CO ₄		2			3			3		1	-				
CO4 CO5		2	3		2			2	1	2 2					
3/2/1 indica	tes s	_	_	relati	-	_ Hi	_		 m. 1						
Category		uuu	ਰ ਹ		JII J	111	5.1., <i>2</i> -	1VICUIT	, 1					Τ	
Succession	Basic Sciences	Engineering Sciences	Humanities	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
	В	ШŠ	Н	P.	P.	0 /	P.	HŢ	Ñ						

Approval						
Subject	Subject Name:	T	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OE1		ETL				
BEE20OE1	ELECTRICAL SAFETY FOR ENGINEERS	Т	3	0	0	3
I						

UNIT I HAZARDSOF ELECTRICITY

9Hrs

Introduction – Hazards Analysis – Shock – Shock Effect – Arc –arc energy release-Arc energy-Arcing voltage-Arc surface Area-Incident Energy-Arc Flash Effect – Blast – Affected body parts – Summary of causes –Injury and Death – Protective Strategies.

UNIT II ELECTRICALSAFETYEQUIPMENT

9 Hrs

General Inspection and Testing Requirement for Electrical Safety Equipment – Flash and Thermal Production – Head and Eye Protection – Rubber Insulating Equipment –Hot Sticks-Barrier and signs-Insulated Tools –Safety Grounding Equipment – Electricians Safety Kit.

UNIT III SAFETYPROCEDURES ANDORGANIZATIONALMETHODS 9Hrs

Six Step Safety Methods – Safe Switching of Power System – Voltage measurement Techniques – Placement of Safety Grounds – Tools And Test Equipment – One Minute Safety Audit-Electrical Safety program Development – Employee Electrical Safety Teams – Safety Meetings – Outage Reports – Safety Audits.

UNIT IVREGULATORY AND LEGAL SAFETY REQUIREMENTS ANDSTANDARDS 9Hrs

Regulatory Bodies-ANSI-IEEE-Electrical safety code –Standards for Electrical safety in the workplace-Accident prevention-first aid –Rescue Techniques-accident invention.

UNIT V SAFETY TRAINING METHODSANDSYSTEMS

9Hrs

Introduction – Elements of a good Training Program – On the Job Training – Training Consultants and Vendors- Training Program Setup – Step by Step Method

Total hours: 45

Text Book:

1. Electrical safety handbook - john cadick - McGRAW-HILL, Third Edition

Subject Code: BEE180E2/BI		bject Nai		NICEDY	7 A TION	TTECT	INITOT II		T / L/ ETL		T / S.Lr	P/R	C
200E2		erequisite	RGY CO	NSEK	AHO	V IECH	INIQUE	25	Ty		0/0	0/0	3
				. 1 7	.: D . 1	D) . D	1- C-C		3	0/0	0/0	3
L : Lecture T:7	utoria	ı SLr:	Supervis	ed Leari	ning P : I	Project i	K : Kesea	arch C:C	reaits				
T/L/ETL: The		b/Embed	ded Theor	y and L	ab								
OBJECTIVE				_	_								
	•	ut introdu			•		l'echnole	ogy					
		working l				vation							
		owledge of arious eco			cies								
To hav					vancedta	nnice							
COURSE OU					vanceatt	эргсэ							
CO1		Attain Kn			ov Conse	ervation	Techno	logy					
CO2		Knowledg						<u> </u>					
CO3		Knowledg				of cite	igy com	sei vatioli					
CO4		Ability to		<u> </u>		2 0000000							
CO4		Knowledg				aspects	•						
Mapping of C						ag (DOs	`						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	D	01 2
COS/FOS	3	2	3	2	3	2	2	2	1	3	3	_	2
CO2	3	$\frac{2}{2}$	2	2	2	2	2	2	2	3	2		2
CO3	3	3	2	2	2	2	2	2	2	2	2		1
CO4	2	1	1	1	2	3	2	3	1	1	2		1
CO5	3	1	2	2	1	1	3	2	3	2	3		1
COs / PSOs	P	SO1	PS	02	PS	SO3	PS	SO4					
CO1		3	3		,	2		1					
CO2		2	2	,		1		2					
CO3		2	1			2		3					
CO4		2	2			2		2					
CO5		2	3			3		2					
3/2/1 indicates	stren	gth of co	rrelation	3 – Hi	gh, 2 – I	Medium	, 1 – L	ow	1	•	_	ı	
			al					ja]					
		ces	ocia					nic:					
Category		ien	os 1		ves		g	chi					
Category	ses	Sc	and	<u>9</u>	ctiv	ves	roje	, Te					
	enc	ing	ies i	Co	Ele	ctiv	$/\mathbf{P}_1$	/ sd	S				
	Basic Sciences	Engineering Sciences	Humanities and Soci Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills				
	sic	gin	ma lenc	gra	gra	en	ıcti	ern ill	ft S				
	Ba	En	Humaniti Sciences	Prc	Prc	do	Pra	Inter Skill	Soj				
A 1													
Approval													

Subject Code:	Subject Name:	T / L/	L	T /	P/R	C
BEE18OE2/BEE		ETL		S.Lr		
20OE2	ENERGY CONSERVATION TECHNIQUES	Ty	3	0/0	0/0	3

UNITI INTRODUCTION

9Hrs

Historical uses—Components of the energy conseervation system – Power output from an ideal system – Power output from practical system

UNIT HENERGY CONSERVATION

9Hrs

Principle of energy conservation - waste heat recovery - Heat pump - Economics of energy conservation, cogeneration, combined cycle plants, electrical energy conservation opportunities

UNIT IIIENERGYEFFICIENCIES

9Hrs

Efficiencies- Rate Processes in Energy Conversion- Energy Conversion Reactions- Energy Conversion Devices and Their Efficiency- Heat Transfer Devices and Their Efficiency- Deviations from the Ideal and Component Efficiencies

UNIT IVECONOMICASPECTS

9 Hrs

Economics of power factor improvement – power capacitors – power quality. Importance of electrical energy conservation – methods – energy efficient equipments. Introduction to energy auditing.

UNIT V ADVANCED TOPICS

9Hrs

Introduction to energy auditing- Other conversion technologies- Modeling of micro-grids and distributed generation system- Energy source and energy yield of wind turbine generators- Interfacing issues of renewable energy system to conventional power grid

Total hours: 45

Text books:

- 1. Manwell, J.F. Mcgowan, J.G. Rogers, A.L.(2002) Wind Energy Explained Theory, Design & Application. John Wiley &Sons
- 2. Gray L. Johnson, (1985) Wind Energy Systems. Prentice HallInc

Reference books:

- 1. Epenshaw Taylor, (2009) Utilization Of Electric Energy. 12th Impression. UniversitiesPress
- 2. Wadhwa, C.L. (2003) Generation, Distribution and Utilization of Electrical Energy. NewAge International Pvt. Ltd.

Subject	Sub	ject Nan							Ty			P /	C
Code:		ELE	CTRIC	VEHIC	LE TEC	CHNOL	LOGY		/L/		S.Lr	R	
BEE18OE3/									ETL				
BEE20OE3		requisite							Ty		0	0	3
L : Lecture T					arning P	: Projec	$t R : R\epsilon$	esearch	C:Credi	ts			
T/L/ETL : Th		ab/Embed	lded The	eory and	Lab								
OBJECTIV		4 Tlastnis	Malai al	-Tl	1								
	•	t Electric concept of				olmoda	C						
		wledge o					S						
		e impact											
		l various				the prot	tection	scheme	s forMic	rogrid.			
COURSE O					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	une pro-			, 1011/110	1081101			
CO1		lerstandir			ventiona	ıl and N	onconv	entional	source	of ener	gy reso	urce	S
CO2		iliar to E	-										
CO3	kno	wledge o	1 Hybrid	l Vehicle	 e								
CO4		iliar to C	-										
CO5		uire knov			s power	quality	issues a	and the	protection	on sche	mes in I	Elect	ric
	Veh		C		1	1 ,		,					
Mapping of	Course	Outcom	es with	Progran	n Outco	mes (PC	Os)						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	1	PO12
CO1	2	1	3	2	2	2	1	3	2	2	3		2
CO2	2	1	3	3	1	2	1	3	3	1	3		3
CO3	3	2	3	3	3	3	2	3	3	3	3		3
CO4	3	3	3	3	3	3	3	3	3	3	3		3
CO5	3	3	3	3	3	3	3	3	3	3	3		3
Cos / PSOs]	PSO1	P	SO2		SO3	PS	504					
CO1		2		1		3		2					
CO2		2		1		3		3					
CO3				_									
		3		2		3		3					
CO4		3		3	3	3		3					
CO4 CO5	an at	3		3		3 3 3		3 3 3					
CO4 CO5 3/2/1 indicat	es strer	3 gth of co		3		3 3 3		3 3 3					
CO4 CO5	es strer	3 gth of co	orrelatio	3 on 3-I	High, 2 –	3 3 3		3 3 3					
CO4 CO5 3/2/1 indicat		3 gth of co		3 on 3-I	High, 2 -	3 3 3 - Mediu		3 3 3					
CO4 CO5 3/2/1 indicat	ses	3 gth of co		3 on 3-I	High, 2 -	3 3 3 - Mediu		3 3 3					
CO4 CO5 3/2/1 indicat	ses	3 gth of co		3 on 3-I	High, 2 -	3 3 3 - Mediu	ım, 1 –	3 3 3					
CO4 CO5 3/2/1 indicat	ses	3 gth of co		3 on 3-I	High, 2 -	3 3 3 - Mediu	ım, 1 –	3 3 3					
CO4 CO5 3/2/1 indicat	ses	3 gth of co		3 on 3-I	High, 2 -	3 3 3 - Mediu	ım, 1 –	3 3 3					
CO4 CO5 3/2/1 indicat	ses	3 gth of co		Program Electives Open Electives	High, 2 –	3 3 3		3 3 3					
CO4 CO5 3/2/1 indicat	ses	3 gth of co		3 on 3-I	High, 2 –	3 3 3 - Mediu	ım, 1 –	3 3 3					

Subject	Subject Name:	T	L	T /	P /	C	
Code:		/L/		S.Lr	R		
BEE18OE3/		ETL					
BEE20OE3	ELECTRIC VEHICLE TECHNOLOGY	T	3	0	0	3	
						l	ı

UNITI:INTRODUCTION

9 Hrs

Advanced Energy Storage Systems - Types of PEVs - Charging Techniques - V2G and G2V - Alternative Fuel and HEV Vehicle Technology

UNIT II:AUTOMOTIVESYSTEMS

9 Hrs

Introduction to today's automobiles – Basic Automotive Components - A working knowledge of basic automotive components - general maintenance necessary for vehicle operations f

UNIT III: ELECTRIC & HYBRID

VEHICLETECHNOLOGY19HrsFundamentals of Electric and Gas-Electric Hybrid Vehicles - EV and HEV batteries, Fuel Cells, Electric Motor Controllers Invertors - AuxiliaryAccessories

UNIT IV: ELECTRIC & HYBRID VEHICLETECHNOLOGY2 9 Hrs

 $Battery\ Electric\ Vehicles\ (BEV)\ -\ Hybrid\ Electric\ Vehicles\ (HEV)\ -\ Plug-in\ Hybrid\ Electric\ Vehicles\ (PHEV)\ -\ Trouble\ Shooting\ PHEVTechnologies$

UNIT V: EV DATA ACQUISITION & CONTROLSYSTEMS 9 Hrs

Vehicle Network Theory, Vehicle Embedded Controllers - Communications Protocols - Sensors, Actuators - Internal Combustion in Electric Assist Vehicles - Vehicle Emissions - Emission Control Systems - PowerControl

Total Hours: 45

REFERENCE BOOKS:

- 1. SumedhaRajakaruna, FarhadShahnia, Arindham Ghosh, "Plug-in-ElectricVehicles in SmartGrid Integration Techniques", Springer,2015
- 2. SumedhaRajakaruna, FarhadShahnia, Arindham Ghosh "Plug-in-Electric Vehicles in SmartGrid Integration Techniques Energy Management", Springer, 2015
- 3. SumedhaRajakaruna, FarhadShahnia, Arindham Ghosh, "Plug-in-Electric Vehicles in SmartGrid Charging Strategies", Springer,2015

Subject		Subjec	et Nam								Ty	L	T /	P /	C
Code:			BIO	MED	ICAL	INS	TRUM	IENTA	TION		/L/		S.Lr	R	
BEE18OE4/	_										ETL				
BEE20OE4		Prerec	quisite:								Ty	3	0	0	3
L : Lecture T								: Projec	t R : Re	esearch	C:Credi	ts		1	
T/L/ETL: T		y/Lab/	Embed	ded Th	neory a	and I	Lab								
OBJECTIV															
											stemwith		kamples	S	
						wled	ge in li	fe assis	ting and	therap	euticdev	rices			
COURSE O						¹ 1rm o	i.a.a. +1a	a huma	n physi	01000					
									_ ,		1 .		1'	1	
CO2					e abie i	to sti	udy abo	out com	municat	tion me	chanics	ın a bı	omeaic	ai sy	stem
CO3			w exan		ic prin	cinl	ac in im	aging t	echniqu	AC					
CO4									d therap		avices				
CO5							ruments		и шегар	cuit u	CVICES				
Mapping of									Os)						
COs/POs		PO1	PO2	PO3			PO5	PO6	PO7	PO8	PO9	PO1	PO	11	PO12
CO1		2	1	3		2	2	2	1	3	2	2		3	2
CO2		2	1	3	3	3	1	2	1	3	3	1	3	3	3
CO3		3	2	3	3	3	3	3	2	3	3	3	3	3	3
CO4		3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5		3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cos / PSOs		PS	O1]	PSO2		PS	03	PS	O4					
CO1		2			1			3		2					
CO2		2			1			3		3					
CO3		3			2			3		3					
CO4		3			3			3		3					
CO5		3		•	3			3		3					
3/2/1 indicat	tes s	trengt		rrelati	on 3	<u>– H</u>	<u>igh, 2 –</u>		ım, 1 –	Low					
Category		ses	and					Technical							
		Sciences			ves		ç	chī							
	Ses	Sc	ses	re	ctiv	ves	roject	Te							
	enc	ing	ies	Co	Ele	ćti	/P	/ sd	S						
	Sci	eer	niti Sci	am	am	Ele	cal	shij	kil						
	Basic Sciences	Engineering	Humanities SocialSciences	Program Core	Program Electives	Open Electiv	Practical / Pr	Internships / Skill	Soft Skills						
	$\mathbf{B}a$	En	Hu	Prα	Prα	$^{\mathrm{op}}$	Prê	Inter Skill	So						
						>									
Approval		l	<u>I</u>				1	<u>ı </u>						1	

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OE4/		ETL				
BEE20OE4	BIOMEDICAL INSTRUMENTATION	Ty	3	0	0	3

UNIT I: ANATOMY, PHYSIOLOGYANDTRANSDUCERS

9Hrs

Brief review of human physiology and anatomy – cell and their structures – electrical mechanical and chemical activities – action and resting potential – different types of electrodes – sensors used in biomedicine – selection criteria for transducers and electrodes – necessity for low noise pre- amplifiers – difference amplifiers – chopper amplifiers – electrical safety – grounding andisolation

UNIT II: ELECTRO -PHYSIOLOGICALMEASUREMENT

9Hrs

ECG – EEG – EMG– lead system and recording methods – typical waveforms

UNIT III: NON - ELECTRICALPARAMETERMEASUREMENT

9Hrs

Measurement of blood pressure – blood flow cardiac output – cardiac rate – heart sound measurement of gas volume – flow rate of CO₂ and O₂ in exhaust air – PH ofblood

UNIT IV: MEDICAL IMAGINGPARAMETERMEASUREMENTS

9Hrs

X-RAY machine – computer tomography – magnetic resonance imaging system – ultra sonography – endoscopy – different types of telemetry system – laser inbiomedicine.

UNIT V: ASSISTING ANDTHERAPEUTICDEVICES

9Hrs

Cardiac pacemakers – defibrillators ventilators – muscle stimulators – diathermy – introduction to artificial kidney artificial heart – heart lung machine – limb prosthetics– elements of audio and visual aids.

Total Hours: 45

Text Books

- 1. Webster, J.G. (1999) Medical Instrumentation: Application and Design.3rd Ed. John Wiley and Son.
- 2. Khandpur R.S.(1987) Hand book of Biomedical Instrumentation and Measurements. New Delhi: Tata McGraw-Hill.

References

- 1. Geddes and Baker, (1975) Principles of Applied Biomedical Instrumentation. USA:John Wiley and Sons.
- 2. Well, G.(1980) Biomedical Instrumentation and Measurements. New Jersey: PrenticeHall.
- 3. Koryla, J. (1980) Medical and Biological Application of electro chemical devices. Chichester: John Wiley and Sons.
- 4. Wise, D. L. (1989) Applied Bio- sensors, Butterworth. USA:

Subject	Subje	ect Nam	e:						Ty	L	T /	P /	C
Code:	I	NTROD	UCTI	ON TO	POWER	RELEC	TRON	ICS	/L/		S.Lr	R	
BEE18OE5/									ETL				
BEE20OE5	Prere	equisite:							Ty	3	0	0	3
L : Lecture T			Superv	vised Lea	arning P	: Projec	t R : Re	search	C:Credi	ts		•	
T/L/ETL: Th		/Embed	ded The	eory and	Lab								
OBJECTIVI													
			ferentty	pesofpo	wersemi	-conduc	ctordevi	cesandt	heirswi	tching			
	cteristics								0				
				character									
				ning tech							nıngreg	ulato	rs
				ntechniq ctionmet		isewiatr	imodula	teainve	ertersand	що			
						or and N	Notrivoo	nvortor	· c				
COURSE O					Controlle	or and IV	1au IXCO	ii v ei tel	3				
COURSE O				racterist	ice of no	Muor cor	ni con	ductors					
CO2			_	d operat	•								
CO2								ers.					
				d operat									
CO4				d operat				- 11	1 1 1				
CO5				d operat				oller an	id Matri	x conv	erters.		
Mapping of								DOG	DOO	DO16) DO:	11	DO12
COs/POs CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		-	PO12
	2	1	3	2	2	2	2	2	2	2	3		2
CO2 CO3	2	1 2	3	3	3	3	3	3	3	3	3		3
	3												3
CO4	3	3	3	3	3	3	3	3	3	3	3		3
CO5	3	3	3	3	3	3	3	3	3	3	3		3
Cos / PSOs	P	501	Р	SO2		303		04					
CO1		2		1		2		2					
CO2		2		1	•	3		3					
CO3		3		2		1		3					
CO4		3		3		1		3					
CO5 3/2/1 indicate	e etropo	th of co	rrolotic		 High, 2 -	2 Modin	m 1	Low					
Category	s streng	111 01 00	Telatio			- Mearu	IIII, 1 –	Low					
				i se	ect								
	Basic Sciences Engineering		ore	Program Electives	Practical / Project	Internships / Fechnical Skill							
	Basic Scienc Engineering	ies	Program Core	El El	1/E	Internships Technical S	IIs						
	Sc	Soioneoe Humanities	lam	am -			Soft Skills						
	usic gir	il il	ogr	ogr	acti	chr	ft ?						
	Br Br	Hur	Pr	The second secon	Pra	Int	\mathbf{S}_0						
				>									
Approval													

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OE5/		ETL				
BEE20OE5	INTRODUCTION TO POWER ELECTRONICS	Ty	3	0	0	3

UNIT I POWERSEMI-CONDUCTORDEVICES

9 Hrs

Study of switching devices, - Frame, Driver and snubber circuit of SCR, TRIAC, BJT, IGBT, MOSFET,-

Turn-on and turn-off characteristics, switching losses, Commutation circuits for SCR, IGBT.

UNIT IIPHASE-CONTROLLEDCONVERTERS

9 Hrs

2-pulse, 3-pulse and 6-pulse converters – Effect of source inductance – performance parameters – Reactive power control of coverters – Dual converters - Battery charger.

UNIT III DC TODCCONVERTER

9Hrs

Step-down and step-up chopper - Time ratio control and current limit control - Buck, boost, buckboost converter, concept of Resonant switching - SMPS.

UNITIVINVERTERS 9 Hrs

Single phase and three phase (both 1200 mode and 1800 mode) inverters -PWM techniques: Sinusoidal PWM,modifiedsinusoidalPWM -multiplePWM - Introductiontospacevectormodulations-Voltage and harmonic control - Series resonant inverter - Current sourceinverter.

UNIT V AC TOACCONVERTERS

9Hrs

Single phase AC voltage controllers – Multistage sequence control - single and three phase cycloconverters –Introduction to Integral cycle control, Power factor control and Matrix converters.

Total hours: 45

TEXT BOOKS

- 1. M.H. Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education, PHI Third edition, New Delhi2004.
- 2. Philip T.Krein, "Elements of Power Electronics" Oxford University Press, 2004Edition.

REFERENCES

- 1. Ashfaq Ahmed Power Electronics for Technology Pearson Education, Indian reprint, 2003.
- 2. P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition 2003.
- 3. NedMohan, Tore. M. Undeland, William. P. Robbins, 'Power Electronics: Converters, Applications and Design', John Wiley and sons, third edition, 2003.

Subject Code: BEE18OE6/					IAL	INS	TRUM	ENTA	TION		Ty /L/ ETL	L	T / S.Lr	P/R	С
BEE20OE6		Prerec	quisite:								Ty	3	0	0	3
L : Lecture T T/L/ETL : T								: Projec	t R : R	esearch	C:Credi	its			
OBJECTIV		<u>, </u>													
			force,												
			easuren							andvisc	osity				
			the Pres			mpe	raturem	easurer	nent						
COURSE O						T		1 1	•,						
CO1			knowle												
CO2			to mea												
CO3										essure 1	neasure	ment			
CO4			knowle				_								
CO5			to wor												
Mapping of										700	700	2010	100		D015
COs/POs		PO1	PO2	PO3	PO		PO5	PO6	PO7	PO8	PO9	PO10			PO12
CO1		2	1	3		2	2	2	1	3	2	2		3	2
CO2		2	1	3		3	1	2	1	3	3	1		3	3
CO3		3	2	3		3	3	3	2	3	3	3		3	3
CO4		3	3	3		3	3	3	3	3	3	3		3	3
CO5		3	3	3		3	3	3	3	3	3	3		3	3
Cos / PSOs		PS		P	SO2			03		504					
CO1		2			1			3		2					
CO2		2			1			3		3					
CO3		3			2			3		3					
CO4		3			3			3		3					
CO5 3/2/1 indicat	toa a	tuonat		malatio	3	TT				3					
Category	ies s	Tengu		Telatio	<u> </u>	<u>- п</u>	Ign, 2 -		1111, 1 -	LOW				1	
Category	Basic Sciences	Engineering Sciences	Humanities and SocialSciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
Approval						>									

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OE6/		ETL				
BEE20OE6	INDUSTRIAL INSTRUMENTATION	Ty	3	0	0	3
		*				

UNIT I: MEASUREMENT OF FORCE, TORQUEANDVELOCITY

9Hrs

Electric balance – Different types of load cells – Magnets – Elastic load cells - Strain gauge load cell – Different methods of torque measurement – Strain gauge, relative regular twist – Speed measurement – Revolutioncounter

UNITII: MEASUREMENT OF ACCELERATION, VIBRATION, DENSITY AND VISCOSITY 9Hrs

Accelerometers – LVDT, piezoelectric, strain gauge and variable reluctance type accelerometers – Mechanical type vibration instruments – Calibration of vibration pick-ups – Units of density, specific gravity and viscosity used in industries – Types of density meter – Viscosityterms – Saybolt viscometer–Rotameter type.

UNIT III:PRESSUREMEASUREMENT

9Hrs

Unitsofpressure-Manometers-Differenttypes-Elastictypepressuregauges-Bourdontypebellows – Diaphragms – Electrical methods – Elastic elements with LVDT and strain gauges – Capacitive type pressure gauge – Piezo resistive pressure sensor –Testing and calibration of pressure gauges – Dead weight tester.

UNIT IV:TEMPERATUREMEASUREMENT

9Hrs

Definitions and standards – Primary and secondary fixed points – Calibration of thermometer, different types of filled in system thermometer – Sources of errors in filled in systems and their compensation – Bimetallic thermometers – Electrical methods of temperature measurement

UNIT V: THERMOCOUPLESANDPYROMETERS

9Hrs

Thermocouples – Laws of thermocouple – Fabrication of industrial thermocouples – Signal conditioning of thermocouples output – Thermal block reference functions – Radiation methods of temperature measurement – Radiation fundamentals – Total radiation & selective radiation pyrometers – Optical pyrometer – Two colour radiation pyrometers.

Total Hours: 45

Text Books

- 1. Doebelin, E.O.(2003) Measurement Systems Application and Design. Tata McGraw Hill publishing company.
- 2. Jain, R.K. (1999) Mechanical and Industrial Measurements. New Delhi: KhannaPublishers.

References

- 1. Patranabis, D. (1996) Principles of Industrial Instrumentation. TataMcGraw Hill Publishing Company Ltd.
- 2. Sawhney, A.K. and Sawhney, P.(2004) A Course on Mechanical Measurements, Instrumentation and Control Dhanpath Rai and Co.
- 3. Nakra, B.C. & Chaudary, B.C. Instrumentation Measurement & Analysis. Tata McGraw Hill PublishingLtd.
- 4. Singh, S.K.(2003) Industrial Instrumentation and Control. Tata McGrawHill.
- 5. Eckman, D.P. Industrial Instrumentation. Wiley EasternLtd.

Subject Code: BEE18OE7/	Subje	ct Nam SOLA		RGY	Z CO	NVER	SION S	SYSTE	M	Ty /L/ ETL	L	T / S.Lr	P/R	С
BEE20OE7	Prere	quisite:								Ту	3	0	0	3
L : Lecture T:	Futorial	SLr :	Superv	vised	Lear	ning P	: Projec	t R : Re	esearch	C:Cred	its		1	
T/L/ETL: The	eory/Lab						3							
OBJECTIVE														
	ıdy abou													
	part kno								hnology	1				
	derstand							cells						
	sign the S						er.							
	rn about				chite	cture								
COURSE OU					Dod	iation	nd the a	01100t0						
							nd the c		• •	1 1				
CO2							n of Sol			nnology	<i>/</i>			
CO3							Photov							
CO4							st effec							
CO5							olar pas		chitect	ure				
Mapping of C									DOG	DOG	DO10	l DO	44	DO 14
COs/POs	PO1	PO2	PO3	PC		PO5	PO6	PO7	PO8	PO9	PO10	_		PO12
CO1	3	3	3		3	3	3	3	2	2	2	3		2
CO2	3	3	3		3	3	3	3	2 2	2 2	2 2	3		2
CO3	3	3	3		3		_	3						
CO4	3	3	3		3	3	3	3	2	2	2	3		2
CO5	3	3	3		3	3	3	3	2	2	2	3	5	2
Cos / PSOs		01	P	SO2			03		SO4					
CO1		2		3			3		3					
CO2		2		3			3		3					
CO3		2 2		3			3		3					
CO4 CO5		<u>2</u> 2		3			3		3					
3/2/1 indicate			 rralatio		н	•	_							
Category	Suchgi	2 to 10	1	л з	- 11	<u> </u>	Wiediu	iii, 1 –	LOW					
Category				es		5								
	ß		co.	tiv	es)jeć	⊟							
		SS	or	Эlec	tiv	Pr	s/ Sk							
	erii	nitie	m (m E	3lec	al /	hip cal	άII§						
' ج			a a	ra	n E	tic	rns	S						
5	ine	มลา เกล	56	PU I										
	Sasic	Tuma	Progr	rog)pe	rac	nte [ec	S oft						
· ·	Engineering	Humanities	Program Core	Program Electives	√ Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
Approval	Engine .	Huma	Progr	Prog	√ Ope	Prac	Inte	Soft						

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OE7/		ETL				
BEE20OE7	SOLAR ENERGY CONVERSION SYSTEM	Ty	3	0	0	3

UNIT I SOLAR RADIATIONANDCOLLECTORS

9 Hrs

Solar Radiation- Solar angles - Sun path diagrams - shadow determination - Solar Collectors - flat plate collector thermal analysis - heat capacity effect - testing methods-evacuated tubular collectors - concentrator collectors

UNIT II APPLICATIONS OF SOLARTHERMALTECHNOLOGY

9 Hrs

Principle of working, types - design and operation of - solar heating and cooling systems - solar water heaters - thermal storage systems - solar still - solar cooker - domestic, community - solar pond - solar drying

UNIT III SOLARPVFUNDAMENTALS

9Hrs

Solar cells - p-n junction: homo and hetro junctions - metal-semiconductor interface - dark and illumination characteristics - efficiency limits - variation of efficiency with band-gap and temperature - efficiency measurements - high efficiency cells

UNIT IV SOLAR PHOTOVOLTAIC SYSTEM DESIGNANDAPPLICATIONS 9Hrs

Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cell array design concepts - PV system design - design process and optimization -voltage regulation - maximum tracking — use of computers in array design - quick sizing method - array protection and troubleshooting - stand alone

UNIT V SOLARPASSIVEARCHITECTURE

9 Hrs

Thermal comfort - heat transmission in buildings- bioclimatic classification – passive heating concepts: direct heat gain - indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporative cooling - application of wind, water and earth for cooling; shading - paints and cavity walls for cooling - roof radiation traps - earth air-tunnel. – energy efficient landscape design

Total Hours: 45

Text Books:

- 1. Sukhatme S P, (1984), Solar Energy, Tata McGrawHill
- 2. Kreider, J.F. and Frank Kreith, (1981), Solar Energy Handbook, McGrawHill
- 3. Goswami, D.Y., Kreider, J. F. and & Francis., (2000), Principles of Solar Engineering

Reference Books:

- 1. Garg H P., Prakash J., (2000), Solar Energy: Fundamentals & Applications, Tata McGrawHill
- 2. Duffie, J. A. and Beckman, W. A., (1991), Solar Engineering of Thermal Processes, JohnWiley
- 3. Alan L Fahrenbruch and Richard H Bube, (1983), Fundamentals of Solar Cells: PV Solar Energy Conversion, AcademicPress
- 4. Larry D Partain, (1995), Solar Cells and their Applications, John Wiley and Sons, Inc.

Subject	Subje	ct Nam	e:						Ty	L	T /	P /	C
Code:		WINI	ENER	RGY CO	NVERS	SION S	YSTEN	I	/L/		S.Lr	R	
BEE18OE8/B									ETL				
EE20OE8	Prere	quisite:							Ty	3	0	0	3
L : Lecture T:				ised Lear		: Projec	tR:Re	esearch	C:Credi	ts			
T/L/ETL: The	eory/Lab	/Embed	ded The	ory and l	Lab								
OBJECTIVE													
				nd Energy	y Conve	ersionSy	stem						
	solve the												
				nic Devi	ces and	itschara	acteristi	cs.					
	understa												
				version s	system	such as	subsyst	ems and	d itscom	ponent	S		
COURSE OU													
CO1		_		Energy S	-								
CO2	Capab	oility to	find solı	ution for	Energy	Crisis							
CO3	Attain	ed knov	vledge o	on variou	s types	of conv	erters						
CO4	Famil	iarity in	Power	Electroni	cs Devi	ces and	its perf	ormanc	e.				
CO5	Abilit	y to des:	ign Elec	trical Ma	achines	for Win	d Energ	gy Conv	ersion S	System			
Mapping of C	ourse O	utcome	s with l	Program	Outco	mes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12
CO1	3	1	1	2	2	3	2	1	1	3	3	3	1
CO2	2	3	3	3	3	3	3	3	2	2	3	3	3
CO3	3	2	2	3	2	3	2	2	2	1	3	3	2
CO4	2	2	2	2	1	3	2	2	3	2	3	3	1
CO5	3	3	3	3	3	3	2	3	3	2		3	2
Cos / PSOs		01		SO2		O3		SO4				-	
CO1		2		1		1		2					
CO2		1		3		2		3					
CO3		1		2		3		2					
CO4		2		2		3		2					
CO5		3		3		3		3					
3/2/1 indicates	s strengt	th of co	rrelatio	n 3 – H	igh, 2 -	- Mediu	m, 1 –	Low					
Category													
			le			kill /							
	ing En	ies	ပိ	cti	_	ps.	ls						
5	Engineering	Humanities	Program Core	Program Elactives Open Electives	Practical Project	Internships / Technical Skill	Soft Skills						
	sic 	ma)gra	Program Electives Open Ele	lcti	ch Shu	ft S						
	Eng.		Prc	<u>Рт</u> <u>п</u> Ор	Practica Droject	Int	So						
				>									
Approval		•		•	•			•					
- pp-0													

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OE8/B		ETL				
EE20OE8	WIND ENERGY CONVERSION SYSTEM	Ty	3	0	0	3

UNIT I INTRODUCTION TOWINDSYSTEMS

9Hrs

9Hrs

Historical uses of wind – History of wind turbines – Horizontal axis wind turbines – Darreius Wind Turbines – Innovative wind turbines – Components of the wind energy conversion system – Power output from an ideal wind turbine – Power output from practical wind turbines

UNIT II WIND CHARACTERISTICS&MEASUREMENTS

Meteorology of wind - Wind speed statistics - Weibull Statistics - Rayleigh and normal distribution-

Windmeasurements-Eolianfeatures-BiologicalIndicators-Types of an emometers and their operation

- Wind direction - Wind measurements with balloons

UNIT III WIND TURBINE SUBSYSTEMS&COMPONENTS

9Hrs

Rotor – Blades – Aerodynamic design – Structural Design – Fabrication – Aerodynamic ControlSurfaces – Hub – Types- Drive Train – Coupling – Gearbox – Brake – Types – Main frame & Nacelle – Tower

UNIT IV ELECTRICAL MACHINESFORWECS

9Hrs

Induction Machine – Theory of IM operation - Dynamic dq Modeling - Doubly fed Induction Generator – Synchronous Machines – Theory of operation – Starting wind turbines with IG - Variable Reluctance Machine – Effect of Harmonics

UNIT V OVERVIEWOFCONVERTERS

9 Hrs

Six Pulse Converter – 12 Pulse Converter – Sequential control of converters – Converter Control – EMI and Power Quality Problems – Control of Cycloconverter – Matrix Converters – High Frequency Cycloconverter, VFC and CFC

Total Hours: 45

Text books:

- 1. Manwell, J.F. Mcgowan, J.G. Rogers, A.L.(2002) Wind Energy Explained Theory, Design & Application. John Wiley &Sons
- 2. Gray L. Johnson, (1985) Wind Energy Systems. Prentice HallInc
- 3. Bose, B.K. (2001) Modern Power Electronics & AC Drives. PrenticeHall

Reference Books:

1. Vaughn Nelson, (2009) Wind Energy – Renewable Energy & the Environment. CRC Press

Subject Code: BEE18OE9/B EE20OE9		ct Nam ENI quisite:		STORA	GE TEC	CHNOI	LOGY		Ty /L/ ETL Ty	L 3	T / S.Lr	P / R	C 3
		_	~									U	3
L : Lecture T:			•	ised Lea	_	: Projec	t R : Re	esearch	C: Cred	lits			
T/L/ETL : The OBJECTIVE		Embed	aea i ne	ory and	Lab								
		t the End	eray Sta	rageTecl	hnology								
				e of Batt			ec						
				Cells alo				nddisa	dvantag	es			
		_		ergy sto	_		antage t	maansa	avantag	CS			
				edge on I									
COURSE OU													
CO1		•	, , ,	Energy	Storage	Techno	logy						
CO2				orking pr				its type	<u> </u>				
CO3	Know	ledge n	Fuel ce	lls	p.r	<i>31 0 411101</i>	100 4110	its type					
CO4				ious type	es of ene	ergy sto	rage dev	vices					
CO5				c vehicle		218) 510	ruge ue	1005					
Mapping of (mes (Po	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12
CO1	3	2	3	2	3	2	2	2	1	3	3		2
CO2	3	2	2	2	2	2	2	2	2	3	2		2
CO3	3	3	2	2	2	2	2	2	2	2	2		1
CO4	2	1	1	1	2	3	2	3	1	1	2		1
CO5	3	1	2	2	1	1	3	2	3	2	3		1
Cos / PSOs		SO1		SO2	PS	03		04		_			
CO1		3		3		2	1	1					
CO2		2		2		1		2					
CO3		2		1	1	2		3					
CO4		2		2	1	2	,	2					
CO5		2		3	1	3	,	2					
3/2/1 indicates	strengtl	ı of corı	elation	3 – Hi	gh, 2 – 3	Mediur	n, 1 – l	Low					
Category	S	and				cal							
	nce	"		S		hni							
	s 	Š	-	tive is	jec	[ec]							
	nce g S	s ace	ore	lec ive	Pro	[/]							
.	cie rin	fie cie	1 C	Ect Ect	1/1	ips	ills						
	Basic Sciences Engineering Sciences	Humanities SocialSciences	Program Core	Program Electives Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
•	ası 	um oci	rog	rog	ract	Inter	oft						
	л <u>п</u>	H S			<u> </u>	I.S.	Š						
			>										
Approval								•					

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OE9/B		ETL				
EE20OE9	ENERGY STORAGE TECHNOLOGY	Ty	3	0	0	3

UNITI INTRODUCTION TOENERGYSTORAGE

9Hrs

Energy storage – Utilization of Energy storage devices - Need for Energy Storage – Types of energy Storage – Comparison of Energy Storage technologies – Applications.

UNITII ELECTRICALENERGYSTORAGE

9Hrs

Concept of batteries – Measurement of Battery performance – Charging and Discharging- Storage Density – Safety issues. Types of Batteries – Lead Acid, Nickel-Cadmium, Zinc manganese dioxide and modern batteries- Zinc Air, Nickel Hydride, lithiumbattery.

UNITIII FUELCELL 9Hrs

Fuel Cell – History of fuel cell – Principle of electrochemical Storage – Types – Hydrogen oxygen cells, Hydrogen air cell – Hydrocarbon air cell –alkaline fuel cell – detailed analysis – advantage and drawback of each cell.

UNIT IV ALTERNATE ENERGYSTORAGETECHNOLOGIES 9Hrs

Solar Photovoltaics – Wind Power - Flywheel – Super Capacitors – Principles & applications, Compressed Air Energy Storage- Concept of Hybrid Storage - Applications

UNIT V ELECTRICVEHICLE

9Hrs

Electric Vehicle-Types-Hybrid Vehicle-Battering Charging-Usage of batteries in Hybrid Vehicle-Batteries in Hybri

Fundamentals of Electric vehicle modeling - EV and the Environment - Pollution effect.

Total Hours: 45

Text Books:

- IbrabimDincer, marc A,Rosen, (2011) Thermal Energy Storage Systems and Applications, 2nd Ed, JohnWiley
- 2. James Larminie, John Lowry (2003), Electric Vehicle Technology Explained, John Wiley & Sons

References

- 1. Seth Leitman, Bob Brant (2013) Build Your Own Electric Vehicle, 3rd Ed, McGrawHill
- 2. James larminie, Andrew Dicks, (2003), Fuel Cell Systems Explained, Wiley

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Ty L T/ P/

Subject

Subject Name:

Code: BEE18OL1/			Т	RANSDU	J CER I	LAB			/L/ ETL	, _	S.Lr	R	
BEE20OL1	Prerec	quisite:							Lb	0	0/0	3/0	1
L : Lecture T:T	utorial	SLr:	Super	vised Lear	rning P	: Projec	t R : Re	esearch	C: Cred	lits			1
T/L/ETL: The		Embed	ded Th	eory andL	ab								
OBJECTIVE:													
				nsducers a									
				used for the							es		
				its to mee				ndustria	lapplica	ations			
				tive and I	nductiv	etransd	ucers						
	brate va												
COURSE OU					11 1		1		1 1	1 .	<u> </u>		
CO1			udents	to practic	any kno	ow abou	it transd	ucers a	na abou	t the ty	pes of		
CO2	Transd		1	1 6 - 4			- C . ·	1					
CO2				ised for th								1	
CO3			an iden	tify suitab	ole instri	uments	to meet	the req	uıremer	its of i	ndustria	ıl	
CO4	applica			D	•		1.3	r 1		1			
CO4				asure Res			ve and	Inductiv	ve trans	aucers			
CO5				te various			0 \						
Mapping of Co								DOO	DOO	DO46	<u> </u>		DO 10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			PO12
CO1	3	1	2	3	3	2	2	1	3	2	3		2
CO2	3	3	3	3	2	2	1	1	2	3	2		1
CO3	3	2	2	2	2	1	2	2	3	3	2		1
CO4	2	3	3	2	3	2	3	3	3	2	1		2
CO5	3	3	3	3	1	2	1	2	3	3	2		1
Cos / PSOs	PS	O 1	P	SO2	PS	O3	PS	O 4					
CO1	2	2		2		3		3					
CO2	3	3		3	1	3		2					
CO3	3	3		3	1	3		2					
CO4	3	3		3	2	2	3	3					
CO5	2	_		2	_	3		1					
3/2/1 indicates	strengt	h of co	rrelatio	on 3 – H	igh, 2 –	- Mediu	ım, 1 –	Low					
Category				Š									
Basic Sciences	Engineering	Humanities	Program Core	Program Flactives Open Electives	Practical /	Internships / Fechnical Skill	Soft Skills						
Ba	En	H	Pr		Pra	Int	So						
			1 1	>	1			1		1			

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/L/		S.Lr	R	
BEE18OL1/		ETL				
BEE20OL1	TRANSDUCER LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Displacement versus output voltage characteristics of a Potentiometric transducer.
- 2. Strain gaugecharacteristics.
- 3. Load cellcharacteristics.
- 4. Photoelectrictachometer.
- 5. Hall effecttransducer.
- 6. Characteristics of LVDT.
- 7. Characteristic of LDR, Thermistor andthermocouple.
- 8. Ramp response characteristic of filled in systemthermometer.
- 9. Step response characteristic of RTD andthermocouple.
- 10. Flapper nozzle system.
- 11. P/I and I/Pconverters.
- 12. Study of smarttransducers

Total Hours: 45

Subject Code: BEE18OL2/BE 20OL2	EE	ıbject Naı	PL	C AND	SCADA	A LAB			Ty / Lb/ ETL	L	T / S.Lr	P/R	С
	Pr	erequisite:	:						Lb	0	0/0	3/0	1
L : Lecture T:T	utoria	al SLr:	Supervis	ed Learn	ning P : 1	Project I	R : Resea	arch C:C	redits			1	
T/L/ETL: The	ory/La	ab/Embedo	ded Theor	ry and L	ab								
	lerstar	nd the prog			various f	faults us	ingSCA	DA.					
COURSE OU	TCO	MES (CO	s):(3-5)									
CO1		Acquire pr	ogrammi	ng know	ledge in 1	PLC							
CO2		Student car				_							
Mapping of C											•		
COs/Pos	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		012
CO1	3	3	3	3	3	3	2	1	3	1	3		1
CO2 COs / PSOs	3	3	3	3	3	3	2	1	3	1	3		1
COS/PSOS CO1	1	PSO1 3	PS 0			3 3		3 3					
CO2		3	3			3		3				_	
3/2/1 indicates s	streng	gth of corr	relation	3 – Hig	h, 2 – M	ledium,	1 – Lo	W	ı	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	√ Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval						I ,]					
rr · · · · ·													

Subject Code:	Subject Name:	Ty/	L	T /	P/R	C
BEE18OL2/BEE		Lb/		S.Lr		
20OL2		ETL				
	PLC AND SCADA LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1.Interfacing of lamp and button with PLC forON/OFFoperation.
- 2.Perform Delayed Operation Of Lamp By Using PushButton.
- 3. Multiple push button operation with delayed lamp for ON/OFF operation.
- 4. Combination of Counter & Timer for Lamp ON/OFFoperation
- 5.To study Set and Reset operation of lamp.
- 6..DOL Starter & Star Delta Starter operation by using PLC.
- 7.PLC based temperature sensing using RTD.
- 8.PLC based thermal ON/OFFcontrol.
- 9.PLC interfaced with SCADA and status read/commandtransferoperation.
- 10.Parameter reading of PLC inSCADA.
- 11. Alarm annunciation using SCADA.
- 12. Reporting and Trending in SCADASystem.
- 13.Temperature sensing usingSCADA
- 14.Pressure sensing usingSCADA

Total Hours: 45

Subject		Subjec	et Nam								y /	L	T		P/R	C
Code:	_		ELEC	TRICA	AL M	AIN	TENA	NCE L	ΔB		/b/		S.I	Ĺ		
BEE18OL3	8/B									E	CTL		r			
EE20OL3		Prerec	quisite:]	Lb	0	0/	0	3/0	1
L : Lecture	T:Tı	ıtorial	SLr:	Superv	vised I	Lear	ning P	: Projec	t R : Re	esearch	C: Cre	dits		ı		
T/L/ETL:	Theo	ry/Lab/	Embed	ded Th	eory a	ndLa	ab									
OBJECTI	VE:															
	_	ire kno	_		ctrical	Wir	ing									
		w about														
		y about														
		v about														
		about				stor	mers									
COURSE	001					-4	-1:		:4 G D		_					
CO1									it for R		ee.					
CO2									gy meter	r						
CO3			edge or													
CO4								articula	r area							
CO5			arity in													
Mapping o	f Co									D 00	700	1 -	040			D014
COs/POs		PO1	PO2	PO3	PO		PO5	PO6	PO7	PO8	PO9	P	010	PO		PO12
CO1		3	3	3	3		3	2	2	2	1		2	2		1
CO2		3	3	3	3		2	2	2	2	3		2	1		1
CO3		2	2	3	3		3	3	2	2	1		2	2		3
CO4		1	1	2	2		3	3	2	2	1		2	3		2
CO5		3	2	2	1		3	3	2	2	3		2	2	2	1
Cos / PSOs	5	PS		P	SO ₂			03		504						
CO1		2			1		2			2						
CO2		3			1		2			3						
CO3		3			2					3						
CO4		1	-		2		3	3		1						
CO5	- 4		1 C	1-4*	2	11:	2-1- 2	N /1 *		2						
3/2/1 indica	ates s	strengt	n or co	rrelatio	n 3	– HI	ign, 2 –	- Mealu	ım, 1 –	Low						
Category					SS		+									
	S			4)	tive	S) jec	=								
	nce	మ	S	ore	lec	tive	Prc	s/ Ski								
	Basic Sciences	Engineering	Humanities	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Fechnical Skill	ills							
	c S	ine(nan	rar	rar	nΕ	tice	rnsł	Sk							
	asi	Enginee	[nu	rog	rog	pe.	rac	iter ech	Soft Skills							
	B	田口	<u> </u>	Ъ	Ъ		<u> </u>	I. T	N		+					
						>										
Approval																

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/Lb/		S.Lr	R	
BEE18OL3/B		ETL				
EE20OL3	ELECTRICAL MAINTENANCE LAB	Lb	0	0/0	3/0	1

LABORATORY LIST OF EXPERIMENTS

- 1. Residential House Wiring Using switches, Fuse, Indicator, Lamp and EnergyMeter
- 2. Types of Wiring
- 3. Study Troubleshooting of ElectricalEquipment
- 4. To study earthing of electricalinstallation.
- 5. To study types of insulators.
- 6. To study maintenance schedule for distribution transformer, testing, maintenance and protection of distribution transformer.
- 7. To study of measurement of insulation resistance and capacitance.
- 8. To study of maintenance schedule for storagebatteryswitchgear and control equipment.
- 9. To study fault occurring in an induction motor to troubleshootthem.
- 10. To study the types of neutral earthing and substationearthing.
- 11. To study construction and types of earthing.
- 12. Calibration of Energy meter

Total Hours: 45

Subject	Subje	ct Nam							Ty	L	T /	P /	C
Code:			POWE	R ELEC	TRON	ICS LA	AB		/Lb/		S.Lr	R	
BEE18OL4/									ETL				
BEE20OL4		quisite:							Lb	0	0/0	3/0	1
L: Lecture T:				rised Lear		: Projec	t R : Re	search	C: Cred	its			
T/L/ETL : The		/Embed	ded The	ory andL	ab								
OBJECTIVE													
				ent types o	of power	semicon	ductor d	levices a	and their	switchi	ng char	acteris	tics
	different t					C			C 4 1	11 I.D		1	
To ur Inver		tne oper	ation, cn	aracterist	ics and p	eriormai	nce para	meters o	or contro	nea Ke	cumers a	ana	
		ne techni	anestoca	ntrolthesp	needofBi	rushlessF	OCMotor	randSRN	Motor				
				AC Voltag			20110101	unasia	10101				
				of Power I			s and Ele	ectric dr	ives in P	owerSy	stem		
COURSE OU	JTCOM	ES (Cos	s): (3-5)										
CO1				d the oper							vledge o	of the	
				fferent de									
CO2				d the oper	ation, c	haracteri	stics and	l perforn	nance pa	ramete	rs of co	ntrollec	i
G02			Inverters		1		4 1 .41-	1	. C D1	.1D/	7 M-4-	10	D
CO3	Motor	its capab	ie to und	lerstand th	e tecnni	ques to c	ontroi th	ie speed	of Brusi	niess Do	_ Moto	r and S	K
CO4		its able to	n underst	and the o	neration	of AC V	oltage C	'ontrolle	re				
CO5				tand the o						orata ii	n deciar	ing the	
COS			ssion Sy		peration	or uniter	ciit coii v	CI tel s ai	iu iicor	orate ii	ii ucsigi	iiig uic	,
Mapping of C					Outco	mes (PC	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12
CO1	3	3	3	3	3	2	2	2	1	2	2	2	1
CO2	3	3	3	3	2	2	2	2	3	2	1		1
CO3	2	2	3	3	3	3	2	2	1	2	2	2	3
CO4	1	1	2	2	3	3	2	2	1	2	3	3	2
CO5	3	2	2	1	3	3	2	2	3	2	2		<u></u>
Cos / PSOs		01		SO2	_	6O3		O4	3		+ -		
CO1		2	1	1		2		2					
CO2		3		1		2		3					
CO3		3		2		1		3					
CO4		1		2	1	3	-	1					
CO5		1		2		1	2	2					
3/2/1 indicate	s strengt	th of co	rrelatio		igh, 2 -	- Mediu			l			L_	
Category						_							
	l iii	fies	_		1/	ips al	IIs						
	Basic Saisman Engineering	Humanities	Program	Program Electives Open	Flootivos Practical Droioct	Internships Fechnical	Soft Skills						
•	Basic Saian Engin	III.	0g1	Progra Elactio Open	Elective Practice Droiset	terr ichi	ft (
4	<u> </u>	<u> </u>	Prc	<u> </u>	<u> </u>	Im	Sc						
				>									
Approval													

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/Lb/		S.Lr	R	
BEE18OL4/		ETL				
BEE20OL4	POWER ELECTRONICS LAB	Lb	0	0/0	3/0	1
DEE200L4	TOWER ELECTRONICS LAD	LU	U	0/0	3/0	1

LIST OF EXPERIMENT

- 1. SCR TriggeringCircuits.
- 2. Phase control using TRIAC
- 3. Phase control using SCR.
- 4. Characteristics of SCR.
- 5. Characteristics of IGBT.
- 6. Single phaseconverters.
- 7. Parallel Inverters.
- 8. Seriesinverters.
- 9. IGBT based PWM Inverters withfilters.
- 10. IGBT based PWM Inverters withoutfilters.
- 11. Step upChopper.
- 12. Step DownChoppers.

Total Hours: 45

Subject Code: BEE18OL5/B		ect Nam BIOM		AL INST	FRUME	NTATI	ON LA	ъВ	Ty /Lb/ ETL	L	T / S.Lr	P/ R	С
EE20OL5	Prer	equisite:							Lb	0	0/0	3/0	1
L : Lecture T:	Tutorial	SLr	Superv	vised Le	arning P	: Projec	t R : Re	esearch	C: Cred	its		1	1
T/L/ETL: Th	eory/La					3							
OBJECTIVI	E:												
		ogicalPre											
					dAnalysi	s.							
		ording of		ram.									
		ording of		· ·	1.15 - 41								
> To st					laiathern	ny							
COURSE OF					mplifiers								
CO2					•		1						
	•				G signal	and Ana	ilysis.						
CO3					diogram.								
CO4 CO5		ble of Re											
Mapping of (Unde	rstands I	31010g10	Drogra	mplifiers	· mag (D	Oa)						
COs/POs	PO1	PO2	PO3	Program PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12
CO1	3	2	2	3	2	1	2	2	1	3	2		1
CO2	3	2	1	2	3	1	2	3	1	2	3		1
CO3	2	2	2	1	3	2	1	3	2	1	2		3
CO4	1	2	3	2	1	2	3	1	2	3	3		2
CO5	3	3	3	2	1	2	1	2	3	3	2		1
Cos / PSOs	P	SO1		SO2	PS	O3	PS	SO4					
CO1		2		2		3		3					
CO2		3		3		3		2					
CO3		2		3		3		2					
CO4		3		3		2		3					
CO5		2		2		3		1					
3/2/1 indicate	es streng		rrelatio	on 3 –	High, 2 -		ım, 1 –	Low					
Category	es	and				cal							
	Suc			S	5	hni							
	ss 	SS	4)	tiv	g sec	Lec							
	nc	ss	or]]ec	Pr	. / s							
	Scie - erii	— itie icie	u	m E 	al /	hip	cills						
	Basic Sciences Engineering Sciences	Humanities SocialSciences	Program Core	Program Electives	Open Executes Practical / Project	Internships / Technic Skill	Soft Skills						
	3as. 	- Inn	Pro§	rog - -	Tac	Inter Skill	oft						
							0 1					†	
Δ 3				7	>								
Approval													

Subject	Subject Name:	Ty	L	T /	P /	C
Code:		/Lb/		S.Lr	R	
BEE18OL5/B		ETL				
EE20OL5	BIOMEDICAL INSTRUMENTATION LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Study of BiologicalPreamplifiers.
- 2. Recording of ECG signal and Analysis.
- 3. Recording of Audiogram.
- 4. Recording of EMG,EEG
- 5. Recording of various physiological parameters using patient monitoring system and telemetry units.
- 6. Measurement of pH, pO2 and conductivity.
- 7. Study and analysis of functioning and safety aspects of surgicaldiathermy.
- 8. Acquisition of Heart sounds using PCG
- 9. Biotelemetrysystem
- 10. BP measuringtechniques
- 11. Glucosesensor
- 12. Heart Lung machine

Total Hours: 45

Subject Code: BBT18OE1/B		1	Subje NUTR			FOOI) AND		Ty ET	/ Lb/ L	L	T / S.Lr		?/ R	C
			Prerequ	iisite:	NIL				Ту		3	0/0	C)/0	3
L : Lecture T :	Tutorial	SLr : S	upervis	sed L	earnin	g P:F	roject	R : Res	earch (C: Cred	lits				
T/L/ETL: The	ory/Lab/E	Embedde	d Theo	ry an	d Lab										
OBJECTIVE	S: Under	standing	g relation	onsh	ip bet	ween	food, n	utritior	and h	ealth					
COURSE OU											able to	0			
CO1		derstand							oohydr	ate					
CO2	Unc	derstand	the nuti	ritive	and c	aloric v	value of	food							
CO3	Kno	ow about	the def	ficien	ncy of	vitami	ns , mic	ro and	macro	nutrier	nts				
Mapping of C	ourse Ou	tcomes	with P	rogra	am Ot	ıtcome	s (POs)	1							
COs/POs	PO1	PO2	PO	3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	011	P	D12
CO1	2	3	3		3	3	2	3	3	1	1		1		3
CO2	2	3	3		3	3	2	3	3	1	1		1		3
CO3	2	3	3		3	3	2	3	3	1	1		1		3
COs / PSOs	PSC	01	J	PSO2	2	P	SO3	PS	O 4						
CO1	3			3			3		3						
CO2	3			3			3		3						
CO3	3	}		3			3		3						
3/2/1 indicate	s strength	n of corr	elation	3 –	High,	2 – Me	edium,	1 – Lov	′						
Category		Basic Sciences	Engineering Sciences	Humanities and	Social Sciences Program Core	Program Electives	Open Electives	Practical / Project	Internships / Tachnical Skill	Soft Skills					
Approval				l		L		_1	<u> </u>		1				

OPEN ELECTIVES- BIOTECHNOLOGY

Subject Code: BBT18OE1/BB T20OE1	Subject Name : FOOD AND NUTRITION	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
1200E1	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNIT-I: BASIC TERMS USED IN STUDY OF FOOD AND NUTRITION

9Hrs

Understanding relationship between food, nutrition and health. Concept of Balanced Diet, Food Groups, Food Pyramid

UNIT-II:NUTRITIONAL SIGNIFICANCE OF CARBOHYDRATES

9Hrs

Definition and classification of carbohydrates. Digestion and absorption of carbohydrates, Metabolism of carbohydrates (Glycolysis, glycogenesis and Glycogenolysis)

UNIT-III:NUTRITIONAL SIGNIFICANCE OF PROTEINS

9Hrs

Definition for proteins, building blocks of proteins (Amino acid classification) functions of proteins, Metabolism of proteins (Synthesis and degradation)

UNIT-IV:NUTRITIONAL SIGNIFICANCE OF LIPIDS

9Hrs

Definition for lipids. Formation of lipids from fatty acids, Classification of lipids. Lipoproteins and their biological role. Biochemical functions of lipids.

UNIT-V NUTRITIONAL SIGNIFICANCE OF VITAMINS AND MINERALS

9Hrs

Classification, Biochemical function and deficiency diseases of Vitamins and minerals

Total Hours: 45

TEXT BOOK

- 1. Anita Tull (1996). Food and Nutrition. Third Edition. Oxford University Press.
- 2. Jenny Ridgwell (1996). Examining Food and Nutrition. Heinemann.
- 3. Paul Fieldhouse (1995). Food and Nutrition. Second Edition, Published by Chapman & Hall.

REFERENCE

- 1. Bamji MS, Krishnaswamy K, Brahmam GNV (2009). Textbook of Human Nutrition, 3rd Edition. Oxford and IBH Publishing Co. Pvt. Ltd.
- 2. Srilakshmi (2007). Food Science, 4th Edition. New Age International Ltd.
- 3. Srilakshmi, (2005), Dietetics, Revised 5th edition. New Age International Ltd.
- 4. Wardlaw MG, Paul M Insel Mosby (1996). Perspectives in Nutrition, Third Edition. Core Course ICMR.
- 5. Sumati R.Mudambi, M.V. Rajagopal (2001). Fundamentals of Foods and Nutrition. Fourth Edition.New Age International Publishers.

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code: BBT18OE2/BI 20OE2		ubject N	Name : 1	HUMAI	N PHYS	IOLO	GY	Ty / Lb/ ET		$\begin{bmatrix} \mathbf{L} & \mathbf{T} \\ \mathbf{S} \end{bmatrix}$	/ .Lr	P/ R	R C
	Pr	erequisit	e: NIL					Ty		3 0,	0	0/0	3
L : Lecture T : 'T/L/ETL : Theo OBJECTIVES	ory/Lab/I	Embedde		and Lal	b						cvcte	em	
COURSE OUT			: After s										
CO2			excretor			iisiii, C	ircuiato	iy and	uigesti	ve sysi	em		
				•		~~~~							
CO3			Endocrii			•							
Mapping of Co													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 P	O 11	PO12
CO1	2	3	3	3	3	2	3	3	1	1		1	3
CO2	2	3	3	3	3	2	3	3	1	1		1	3
CO3	2	3	3	3	3	2	3	3	1	1		1	3
COs / PSOs	PS	01	PS	02	PS	03	PS	O4					
CO1	_	3	3		3			3					
CO2		3	3		3			3					
CO3		3	3		3			3					
3/2/1 indicates	strengt	h of corr	elation :	3 – High	, 2 – Me	dium,	1 – Lov	V					
Category	Basic Sciences		Engineering	Humanities and Social	Program Core	Flectives Open	Flectives Practical /	Droiect Internships /	Soft Skills				

Subject Code:	Subje	ect Nar	ne : C	LINIC	AL BIO	OCHE	MISTI	RY	Ty/	L	T/	P/	C		
BBT18OE3/B									Lb/ ETL	,	S.Lr	R			
BT20OE3											0.40	0.10	<u> </u>		
	Prereq	uisite: l	NIL						Ту	3	0/0	0/0	3		
L : Lecture T : T						P: Proj	ect R	: Resear	ch C: C	redits			-		
T/L/ETL : Theor	y/Lab/E	mbedd	ed The	ory and	Lab										
OBJECTIVES:											vledge a	bout	the		
inborn error of															
COURSE OUT	COMES	G (COs)): Afte	r study	ing this	s cours	e the s	tudent	would	be able t	0				
CO1	Unders	stand th	ie disea	se relat	ed and i	nborn	error ir	n the me	tabolisi	m					
CO2	Unders	stand th	e diffe	rent org	an test l	like liv	er test	and ga	stric fu	nction tes	st etc				
		nderstand the Enzyme patterns in various function													
CO3	Unders	stand th	e Enzy	me pat	terns in	various	functi	ion							
Mapping of Cou	ırse Out	tcomes	with P	rogran	n Outco	mes (I	POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	D12		
CO1	2	3	3	3	3	2	3	3	1	1	1		3		
CO2	2	3	3	3	3	2	3	3	1	1	1		3		
CO3	2	3	3	3	3	2	3	3	1	1	1		3		
COs / PSOs	PSC	01		O2	PS	03	P	SO4							
CO1	3			3	3			3							
CO2	3			3	3			3							
CO3															
3/2/1 indicates	strengtn	ot cori	relation	1 3-H	lign, 2 –	ivieaiu	ım, 1-	- LOW							
						es		;							
		es		Sciences Humanities and	e Ces	gram Electives	es	ctical / Project	Internships / Tochnicol Chill oft Skills						
		enc	gu	es a	gram Core	Elec	ctiv	'Pr	Internships / ˈʌʌbəiː০০1 오12i t Skills	,					
		Scio	eeri	nitii	MIII (m]	Ele	gal /	nternsl Skills						
Category		Basic Sciences	Engineering	ma	gra	gra	Open Electives	octic	Lnt Lool ft S						
Category		Ba	En	Hu F	Pro	Pro	Op	Pra	Soft						
							/								
Approval						<u>ı </u>			I	ı	I	<u> </u>			

Subject Code: BBT18OE2/B	Subject Name : HUMAN PHYSIOLOGY	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BT20OE2	Prerequisite: Biochemistry	Ту	3	0/0	0/0	3

UNIT-I: RESPIRATORY SYSTEM

9Hrs

Components of transport of Oxygen and Carbon dioxide, Role hemoglobin in transport. Mechanism of respiration, Chloride shift, Bhor's effect.

UNIT-II: CIRCULATORY SYSTEM:

9Hrs

Introduction, function, types, of Circulatory organ. Design of Blood vessels, Blood Flow, blood pressure, Cardiac cycle

UNIT-III:DIGESTIVE SYSTEM

9Hrs

Components of Digestive system, Digestion, absorption of carbohydrates, protein, lipids. Role of various enzymes involved in digestive process

UNIT-IV: EXCRETORY SYSTEM

9Hrs

Structure and function of kidney, Structure of a nephron Mechanism of urine formation and other functions of kidney.

UNIT-V: ENDOCRINE AND NERVOUS SYSTEM

9Hrs

Brief outline of various endocrine glands and their secretion, physiological role of hormones. Nervous system - Brain, spinal cord, nerve cells, and nerve fibers. Synapse, chemical and electrical synapses, nerve impulses, action potential and neurotransmission.

Total Hours: 45

TEXT BOOK

- 1. BJ Mejer, HS Meij, AC Meyer ,Human physiology, 2nd edition- AITBs publishers abd distributers.
- 2. K. Saradha subramanyam, S, A Hand Book of Basic Human physiology. Chand & Co., Ltd.
- 3. Y. Rajakshmi, S, Guide to physiology. Chand & Co., Ltd.

REFERENCE

- 1. Gillian Pocock, Christopher D. Richards, David A. Richards. Third Edition 2006. Oxford University Press.
- 2. David Wright, (2000) Human Physiology and Health. Heinemann Educational Publishers.
- 3.Laurence A. Cole, Peter R. Kramer (2016) Human Physiology, Biochemistry and Basic Medicine Academic Press –Elsevier.
- 4.Indu Khurana, (2009) Textbook of Medical Physiology. Published by Elsevier.
- 5. Joseph Feher, (2017) Quantitative Human Physiology an Introduction. Second Edition, Academic Press- Elsevier

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code: BBT18OE3/B BT20OE3	Subject Name CLINICAL BIOCHEMISTRY	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
B120OE3	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNIT-I: BASIC CONCEPTS OF CLINICAL BIOCHEMISTRY

9Hrs

Specimen collection and processing (Blood, urine, faeces). Anti-coagulant and preservatives for blood and urine. Transport of specimens.

UNIT-II: DISEASES RELATED TO CARBOHYDRATE METABOLISM

9Hrs

Regulation of blood sugar, Glycosuria - types of glycosuria. Oral glucose tolerance test in normal and diabetic condition. Diabetes mellitus and hyperglycemia hypoglycemia, Ketonuria and ketosis, Glucogen storage diseases

UNIT-III: DISEASES RELATED TO PROTEIN AND AMINOACID METABOLISM

9Hrs

Diseases related to protein calorie malnutrition (Kwashiorkorand marasmus). Inborn errors of metabolism phenyl ketonuria, alkaptonuria and albinism

UNIT-IV: DISEASES RELATED TO LIPID METABOLISM

9Hrs

Lipid and cholesterol, Classifications, mode of action. Factors affecting blood cholesterol level. Dyslipoproteinemias, IHD, atherosclerosis, and fatty liver.

UNIT-V: CLINICAL ENZYMOLOGY

9Hrs

Enzymes a definition. Isoenzymes with examples. Role of marker enzymes in diseases. Enzyme patterns in acute pancreatitis, liver damage, bone disorder, myocardial infarction and muscle wasting.

Total Hours: 45

TEXTBOOK

- 1. H. Varley, A. H. Gowenlock, and M. Bell (2006) Practical Clinical Biochemistry (6th Ed) London: Heinemann Medical Books, New Delhi (India): CBS
- 2.Ramakrishnan(2001) Clinical biochemistry(3rd Ed) Orient Longman private Ltd.
- 3. Text book of Medical Biochemistry Dr. M.N. Chatterjee and Rane Shinde

REFRENCES

- 1. Clinical chemistry William Hoffman
- 2. Clinical Biochemistry with clinical correlation Devin, Wiley
- 3. Practical clinical biochemistry Harold Varley, CBS, New Delhi
- 4. Nessar Ahmed (2017) Fundamentals of Biomedical Science, Second Edition, Oxford Press.
- 5. R.Swaminathan (2011) Handbook of Clinical Biochemistry, Second Edition, World Scientific Publishing Co.Pte.Ltd

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code:	Subjec	t Name	: BIOP	ROCES	S PRIN	CIPLE	S	T		LT		
BBT18OE4/B BT20OE4								LI E	ο/ ΓL	S.	Lr R	
	Prerequi	isite: NII	_					Ty	7	3 0/0	0.	0 3
L: Lecture T: T	utorial S	Lr : Sup	ervised L	earning	P : Proj	ject R	Resea	rch C:	Credits			
T/L/ETL : Theor	y/Lab/Em	bedded 7	Theory a	nd Lab								
OBJECTIVES:	To study	the bas	ic conce	pt of Bi	oproces	ss conc	epts a	nd to g	ain kno	wledge	about	the
various industri												
COURSE OUT	COMES ((COs) : A	After stu	dying th	nis cour	se the s	tudent	would	be able	e to		
CO1	Underst	and the c	oncept o	f biotran	formtion	n reacti	ons					
CO2		and the r						ıs				
CO3		and the in										
Mapping of Cou							2033 3 y i	3001113				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	3	3	3	2	1	2	3
CO2	2	3	3	3	3	3	3	3	2	1	2	3
CO3	2	3	3	3	3	3	3	3	2	1	2	3
COs / PSOs	PS	501	PS	O2	PS	03	PS	O4				
CO1		3	3	3	3	3	3	3				
CO2		3		3	3			3				
CO3		3		3	3			3				
3/2/1 indicates s	strength o	f correla	tion 3-	High, 2	– Medi	um, 1-	- Low					
Category		Basic Sciences	Engineering Sciences Unmonities and	Social Sciences Program Core	Program	Flectives Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval												

Subject Code: BBT18OE4/BB T20OE4	Subject Name BIOPROCESS PRINCIPLES	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNITI: INTRODUCTION TO INDUSTRIAL BIOPROCESS

9 Hrs

A brief survey of organisms, processes, products relating to modern biotechnology, General requirements of fermentation process

UNIT II: RAW MATERIALS AND MEDIA DESIGN FOR FERMENTATION PROCESS 9 Hrs

Medium requirements for fermentation processes, Media optimization, simple and complex media, design of various commercial media for industrial fermentation

UNIT III: DESIGN OF A FERMENTOR

9 Hrs

Basic functions of a fermentor for microbial or animal cell culture, Bioreactors: Batch, fed batch reactor, continuous stirred tank reactors, residence time distribution.

UNIT IV: STERILIZATION KINETICS

9 Hrs

9 Hrs

Thermal death kinetics of microorganisms, batch and continuous heat sterilization, filter sterilization, air sterilization and design of sterilization equipment for batch and continuous.

UNIT V: APPLICATIONS

Production of Industrially important enzymes (Cellulase and Protease) and Antibiotics (Penicillin and Streptomycin)

Total Hours: 45

TEXT BOOKS

1. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, Principles of Fermentation Technology, Science & Technology Books.

REFERENCES:

- 1. Bailey and Ollis, "Biochemical Engineering Fundamentals", McGraw Hill (2nd Ed.), 1986.
- 2. Shule and Kargi, "Bioprocess Engineering", Prentice Hall, 1992.
- 3. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc.

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Code: BBT18OE5/BB	T20OE	5		•	t Name DICAL				S AN	D	Ty ET	/ Lb/ L	L	T / S.Lı	P/R	C
			DI	AGN	OSTIC	S										
			Pre	erequi	site: NII	L					Ty		3	0/0	0/0	3
L: Lecture T: T	Tutorial	SLr : S	Supe	rvised	l Learnii	ng P:I	Projec	t R	: Res	earc	h C: C	Credits				
T/L/ETL: Theo:																
OBJECTIVES conformation ch		dy the b	iose	nsors	based or	n DNA	confo	rma	tion (chan	ges, B	iosenso	rs ba	sed on	protein	
COURSE OUT		S (COs)) : A	fter s	tudying	this co	urse	the	stude	ent w	vould	be able	to			
CO1					rs as fur											
CO2	Gain k	nowledg	ge or	the t	ypes of	bioseno	ors and	d its	appl	catio	on in t	he clinio	cal fi	eld		
CO3					nciples i			ne no	on cli	nical	l biose	ensors in	vari	ious fi	eld and o	ther
Mapping of Co) s)								
COs/POs	PO1	PO2		03	PO4	PO5	PO		PO	п	PO8	PO9	п	O10	PO11	PO12
COS/POS	POI	POZ	P	U3	PU4	105	PO	0	70	P	08	PO9	ľ	OIU	POII	PO12
CO1	2	3		3	3	3	2		3		3	1		1	1	3
CO2	2	3		3	3	3	2		3		3	1		1	1	3
CO3	2	3		3	3	3	2		3		3	1		1	1	3
COs / PSOs	PS	01		PSC)2	PS	503		F	SO ₄	4					
CO1	3	3		3			3			3						
CO2	3	3		3			3			3						
CO3		3		3			3			3						
3/2/1 indicates	strength	n of corr	relat	ion 3	B – High	, 2 – M	edium	1, 1	– Lov	V						
Category			Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives		Fractical / Froject	Internships / Technical Skill	Soft Skills				
Арргочаг																

Subject Code: BBT18OE5/BBT20OE5	Subject Name :BIOSENSORS AND BIOMEDICAL DEVICES IN DIAGNOSTICS	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNITI: FUNDAMENTALS OF BIOSENSORS

9Hrs

Biosensors as Functional Analogs of Chemo receptors- Immobilization and biosensor construction, Biosensor instrumentation-Transduction principles used in a biosensor, Biocomponent of the sensor. Biological sensing elements and transducer systems- their sensitivity specificity and linearity.

UNIT II: TYPES OF BIOSENSORS

9Hrs

Thermometric Indication with Thermistors, Opto electronic Sensors, Piezoelectric Sensors, Electrochemical Sensors, Potentiometric Electrodes, Amperometric Electrodes, Conductometric Measurement. Flow injection analysis based biosensors, fiber optics biosensors, Bioluminescence biosensors, Microbial biosensors, Affinity biosensors, immunosensors. DNA Probes, organic acid probes, antigen-antibodies reaction, biochemical detection of organelles, receptors, sensors for pollution gases stability and reusability of sensors.

UNIT III: BIOSENSORS FOR CLINICAL ANALYSIS

9Hrs

Biosensors for personal diabetes management (Glucose, Galactose, Gluconate, Lactate, Pyruvate Sensors) Noninvasive Biosensors in Clinical analysis and health care.

UNIT IV: NON CLINICAL APPLICATION OF BIOSENSORS

9 Hrs

Applications in Veterinary, Agriculture, Food production, Environmental control and pollution monitoring, and bioprocess industry.

UNIT V: REAGENTLESS BIOSENSORS & ARRAY-BASED CHIPS

9Hrs

Surface Dielectric Enhancement, Gold nanoparticle enhanced surface plasmon resonance, carbon nanotube and silicon nanowire enhanced conductivity, catalytic activation, electro catalytic detection, catalytically enabled optical and magnetic detection, Reagent less Immunoelectrodes, biomolecule conformational modulated effects, Biosensors based on DNA conformation changes, Biosensors based on protein conformation changes

Total Hours: 45

TEXT BOOK

- 1. Turner A.P.F, Karube I and Wilson G.S, (1987) Biosensors-Fundamentals and applications, Oxford Univ. Press.
- 2. Yang V.C. and T.T. Ngo, (2000) Biosensors and their Applications, Academic/Plenum Publishers.
- 3.Ashok Mulchandani and Kim R Rogers,(1998)Enzyme and Microbial bio sensors: Techniques and Protocols, Humana Press Totowa, NJ.

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

REFERENCE BOOKS

- 1. Turner A.P.F and Wilsons G.S, (1997) Biosensors: Fundamentals and Applications, Oxford Science Publications
- 2. Zoraida P.Aguilar (2013), Nanomaterials for Medical Applications, Elsevier
- 3. Roger J Narayan (2017), Medical Biosensors for Point of care (POC) applications, Wood Publishing –Elsevier.
- 4.Ashutosh Tiwari, Murugan Ramalingam, Hisatoshi Kobayashi, Anthony P.F Turner (2013), Biomedical Materials and Diagnostic Devices

Subject Code:	S	ubject Na	me :Basi	c Bioinfo	ormatic	S			/ Lb/	L	T/S.Lr	P/R	C
BBT180E6/B	В]]	ETL				
T20OE6		rerequisite	e: NIL						Ту	3	1/0	0/0	4
L : Lecture T :	Tutoria	al SLr:	Supervise	d Learni	ng P:P	roject F	R : Resea	rch C: C	redits				
T/L/ETL: The						3							
OBJECTIVE													
pairwise and methods in pro				t and the	e princip	le and to	gain kn	owledge	on appro	aches fo	or gene pre	diction	
COURSE OU	TCOM	IES (COs): Upon	complet	ion of th	nis cour	se, stude	ents will	be able t	0			
CO1		Develop bi	oinformat	tics tools	with pro	ogramm	ing skills	S.					
CO2	A	apply com	putationa	l based s	olutions	for biol	ogical pe	erspectiv	es.				
CO3	P	ursue higl	her educat	tion in th	is field.								
Mapping of C						c (POc)							
							1	ı	T	1		ı	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			D12
CO1	2	3	3	3	3	2	3	3	2	2	2		3
CO2	2	3	3	3	3	2	3	3	2	2	2		3
CO3	2	3	3	3	3	2	3	3	2	2	2		3
COs / PSOs	P	SO1	PSC		PS			504					
CO1		3	3			3		3					
CO2		3	3			3		3					
CO3		3	3			3		3					
3/2/1 indicate	s stren	gth of cor	relation	3 – High	, 2 – Me	dium, 1	l – Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		ı	I	1	1	ı	1	<u>ı </u>		1	<u> </u>	1	

Subject Code: BBT18OE6/BBT20OE6	Subject Name: Basic Bioinformatics	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNIT I:BIOLOGICAL DATABASES AND DATA RETRIEVAL

9 Hrs

Nucleotide databases (Genbank, EMBL), Sequence submission Methods and tools (Sequin, Sakura), Sequence retrieval systems (Entrez), Protein (Swiss-Prot, Tr-EMBL, Expasy), Genome (NCBI, EBI, TIGR), Metabolic Pathway DB (KEGG)

UNIT II: PAIRWISE SEQUENCE ALIGNMENT

9 Hrs

Similarity, Identity and Homology, Global Alignment, Local Alignment, Database Search methods & tools, Scoring Matrices,

UNIT III: MULTIPLE SEQUENCE ALIGNMENT

9 Hrs

Significance of MSA, Scoring of MSA, PSI/PHI-BLAST.

UNIT IV: GENE PREDICTION

9 Hrs

Structure in Prokaryotes and Eukaryotes, Gene prediction methods, Neural Networks, Pattern Discrimination methods, Signal sites Predictions (Promoter, Splice, UTR, CpG-islands) Methods of Construction of Phylogenetic trees

UNIT V:NUTRIGENOMICS

9 Hrs

Introduction to Nutrigenomics and Nutraceuticals

Total Hours: 45

REFERENCES

- 1. Introduction to Bioinformatics A. Lesk 2002, Oxford University Press
- 2. Fundamental concepts of Bioinformatics by D.E. Krane and M.L Raymer, Pearson Education 2003 ISBN 81-297-0044-1
- 3. Current Protocols in Bioinformatics, Edited by A.D. Baxevanis et. al., Wiley Publishers 2005
- 4. Introduction to Computational Molecular Biology by Joao Carlos Setubal, Joao

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

Subject Co	de:	Su	bject N	lame : B	asic Bi	ochemi	stry La	b	_	/ Lb/	L	T/	P/R	. C
BBT18OL	1/B								ET	L		S.Lr	'	
BT20OL1		Pre	erequisi	te: NIL						Lb	0	0/0	3/0	1
L : Lecture	T: 7	L Tutor	rial SI	Lr : Supe	ervised I	Learning	g P:P1	roject R	R : Rese	arch C:	Cre	dits		
T/L/ETL:	Theo	ry/L	ab/Emb	edded T	heory a	nd Lab								
OBJECT			learn th	e basic k	nowledg	ge about	differen	t types o	f Biomo	lecules	and t	heir ide	entificati	on by
COURSE			MES (COs) : A	fter fin	ishing t	his cou	rse the	studen	ts woul	ld be	able t	to	
CO1		A	cquire k	nowledge	e about	the basic	es of Nu	itrition						
CO2		Kı	now abo	out the di	fferent t	ypes of	Biomol	ecules						
CO3		U	ndersta	and the	applica	tions o	f Bio c	hemist	ry					
Mapping o	of Co	urse	Outco	mes wit	h Progi	am Ou	tcomes	(POs)						
COs/POs	PC)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12
CO1	2	,	3	3	3	3	2	3	3	3	2		1	3
CO2	2	,	3	3	3	3	2	3	3	3	2		1	3
CO3	2		3	3	3	3	2	3	3	3	2		1	3
COs /		PSC)1	PSC	02	PS	О3	PS	O4					
PSOs														
CO1		3		3	}	3	3	3	3					
CO2		3		3	3	3	3	3	3					
CO3		3		3	}	3	3	3	3					
3/2/1 indic	ates	stre	ngth of	correlat	tion 3	- High,	2 – Me	dium, 1	L – Low		ı	<u> </u>		
			Sciences			S			[]					
		S	cieı	es es		ctives	es	Practical / Project	Internships / Technical Skill					
		ce		s an	ore	lect	ive	Pro	shir al S					
		cier	irin,	ties Scie) C	ıΕ	lect	1/]	erns mic	118				
Category		S	nee	ani	ran	ran.	回回	ica	Internsh Technical	Ski	lab			
		Basic Sciences	Engineering	Humanities and Social Sciences	Program Cor	Program Elec	Open Electiv	ract	T	Soft Skills	open lab			
	-	<u> </u>	山	ΗŠ	<u>F</u>	P	0	집		Ň	lo	'		
											•			

Subject Code: BBT18OL1/BBT	Subject Name : Basic Biochemistry Lab	Ty / Lb/ ETL	L	T/S.Lr	P/R	С
20OL1	Prerequisite: NIL	Lb	0	0/0	3/0	1

OPEN LAB

LIST OF EXPERIMENTS

- 1. Laboratory Safety and Hygiene
- 2. Preparation of Molar solution
- 3. Preparation of percentage solution
- 4. Preparation of Normal solution
- 5. Qualitative analysis of carbohydrates (any one sample)
- 6. Qualitative analysis of Proteins (any one sample)
- 7. Isolation of Casein
- 8. Isolation of starch

TEXT BOOKS:

- 1. Gupta R.C. and Bhargavan S. Practical Biochemistry.
- 2. David T. Phummer. Introduction of Practical Biochemistry (II Edition).

Subject Cod	le: Su	ıbject N	ame : B	asic Bio	proces	s lab		_	Lb/	L	T /	P/R	C
BBT18OL2/	B							ET	L		S.Lr		
BT20OL2	Pr	erequisit	te: NIL						Lb	0	0/0	3/0	1
L : Lecture T	: Tuto	rial SL	r : Supe	rvised L	Learning	g P : Pr	oject R	: Resea	arch C:	Crec	lits		
T/L/ETL : T	heory/L	ab/Emb	edded Tl	neory ai	nd Lab								
OBJECTIV					e about	differen	t types of	f biotran	sformati	on re	eactions	for the	
production of						. <u>.</u>	41	.4		J 1	- l-l - 4 -		
COURSE O	UICO	MES (C	(OS) : A	iter fini	shing ti	nis cour	se the	student	s would	a be	able to	•	
CO1			nowledge				rocess re	eactions					
CO2			ut the cu										
Mapping of	Course	e Outcor	mes with	Progr	am Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO11	PO12
CO1	2	3	3	3	3	2	3	3	3		2	1	3
CO2	2	3	3	3	3	2	3	3	3		2	1	3
COs / PSOs	PS	SO1	PSO)2	PS	O3	PS	O 4					
CO1		3	3		3	3	í.	3					
CO2		3	3		3	3	-	3					
3/2/1 indica	tes stre	ngth of	correlat	ion 3-	High, 2	2 – Med	dium, 1	– Low			Į.		
					Se		1						
	ses		ities and Sciences	e e	Program Electives	/es	Practical / Project	Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Ele	Open Electives	/ P1	nsh ical	ls				
Q .	Sc	neer	anit ıl S	am	am	Ele	ical	nter	Skil	lab			
Category	asic	Engineer Sciences	Humani Social	rogı	rogı	pen	ract	I	Soft Skills	open lab			
	В	ПN	H	<u> </u>	<u> </u>	0	<u> </u>		N	Ō			
										`			
Approval		1		ı	1	1	1	1			1		

Subject Code: BBT18OL2/BB	Subject Name : Basic Bioprocess lab	Ty / Lb/ ETL	L	T/S.Lr	P/R	С
T20OL2	Prerequisite: NIL	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Pure culture techniques
- 2. Determination of growth curve of the given organism
- 3. Screening of amylase producing microorganism
- 4. Screening of protease producing microorganism
- 5. Determination of TDP (Thermal death point)
- 6. Determination of TDT (Thermal death time)
- 7. Production of ethanol using batch fermentation

Reference

- 1. Manual of industrial microbiology and Biotechnology, Demain A.L. Solomon, J.J., 1986. ASM press.
- 2. Industrial Microbiology, Reed C., Prescott and Dann's, 1982. Macmillan publishers.

Subject Cod	le:	Subject N	Name : B	asic Mi	crobiol	Ty	/ Lb/	L	T /	P/R	C		
BBT18OL3/	B							ET	L		S.Lr		
BT20OL3]	Prerequis	ite:						Lb	0	0/0	3/0	1
L : Lecture T	` : Tu	torial S	Lr : Supe	rvised L	earning	g P : Pr	oject R	: Rese	arch C:	Crec	lits	•	
T/L/ETL : T	heory	/Lab/Emb	edded Tl	neory ar	nd Lab								
OBJECTIV	OBJECTIVE : To learn the basic knowledge about different types of Microorganisms identification by staining												
methods													
	COURSE OUTCOMES (COs): After finishing this course the students would be able to												
CO1		Acquire knowledge about the basics of microbiology											
CO2		Know abo											
CO3		Understa						ficatio	n				
Mapping of	Cour	se Outco	mes with	n Progr	am Ou	tcomes	(POs)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO11	PO12
CO1	2	3	3	3	3	2	3	3	3		2	1	3
CO2	2	3	3	3	3	2	3	3	3		2	1	3
CO3	2	3	3	3	3	2	3	3	3		2	1	3
COs /]	PSO1	PSC)2	PS	О3	PS	O4					
PSOs													
CO1		3	3	3		3		3					
CO2		3	3			3		3					
CO3		3	3			3		3					
3/2/1 indica	tes st	rength of	correlat	ion 3-	High, 2	2 – Med	dium, 1	– Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	open lab			
Approval					ı	ı					l		

Subject Code: BBT18OL3/BBT	Subject Name : Basic Microbiology Lab	Ty / Lb/ ETL	L	T/S.Lr	P/R	C
20OL3	Prerequisite:	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Sterilization technique Moist heat, dry heat
- 2. Preparation of culture media (a) Solid medium (b) liquid medium
- 3. Sterilization of media
- 4. Pure culture technique
- 5. Use of microscope
- 6. Identification of microbes simple Staining
- 7. Identification of microbes Gram staining
- 8. Hanging drop preparation for motility test

TEXT BOOKS

- 1. Monica Chessbrough(1999) Laboratory Manual in Microbiology(Vol I & II)Cambridge University Press
- 2. collee, J.G. etal., "Mackie & McCartney Practical Medical Microbiology" 4th Edition, Churchill Livingstone, 1996.

REFERENCE BOOKS

1. Cappucino (1999) Microbiology - A laboratory Manual Benjamin Cumming

Subject Code:	Sub	Subject Name: Basic Bioinformatics Lab							/ Lb/	L	T/S.Lr	P/R	\mathbf{C}
BBT18OL4/BB								E	TL				
T20OL4	Pre	requisite	: Molecula	ar Biolos	gy & Pro	otein Sci	ence]	Lb	0	0/0	3/0	1
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL :													
Theory/Lab/Embedded Theory and Lab													
OBJECTIVE: To enable the students to understand To understand basic commands in UNIX OS.To understand													
different biological databases. To carry out sequence and phylogenetic analysis.													
COURSE OUTCOMES (COs): After completing this course students were able													
CO1	Т	o demon	strate the	protein/l	DNA sec	quence s	earch me	thods ar	nd seque				s.
	To demonstrate the protein/DNA sequence search methods and sequence alignment databases. To understand and hands-on-training on the genome sequence analysis and annotation.												
CO2	To analyze the comparative genomics.												
CO3			ious comp		l tools fo	or expres	sion ana	lysis to	identify	open 1	eading fra	mes,	
			conserved										
Mapping of Cours	se Oı	itcomes	with Prog	gram Oı	utcomes	(POs)							
COs/POs P	O1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO	1 P	012
CO1	2	3	3	3	3	2	3	3	2	2	2		3
CO2	2	3	3	3	3	2	3	3	2	2	2		3
CO3	2	3	3	3	3	2	3	3	2	2	2		3
COs / PSOs	PS	01	PS()2	PS	O3	PS	O4					
CO1	3	3	3		3	3		3					
CO2	3		3			3		3					
CO3	3		3			3		3					
3/2/1 indicates str	rengt	h of corr	elation 3	B – High,	2 – Med	lium, 1	– Low						
ces		.	and	ıre	ectives	ves	roject	ips/ Skill					
Category Category		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Open lab			
										/			
Approval				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				

Subject Code:	Subject Name :Basic Bioinformatics Lab	Ty / Lb/ ETL	L	T/S.Lr	P/R	С
BBT18OL4/ BBT20OL4	Prerequisite: Molecular Biology & Protein Science	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Demonstration of Entrez
- 2. Demonstration of SRS
- 3. Exploring nucleotide database Gen Bank
- 4. Exploring Protein Database Uniprot
- 5. Database Searches with BLASTP
- 6. Pair wise Sequence Alignment -EMBOSS
- 7. Multiple sequence alignment CLUSTAL OMEGA

REFERENCE BOOK

- 1. Bioinformatics and Functional Genomics by Jonathan Pevsner
- 2. Bioinformatics Data Skills: Reproducible and Robust Research with Open by Vince Buffalo
- 3. Introduction to Bioinformatics Using Action Labs by Jean-Louis Ryan Rossi, Stephen Sheel

COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE) OPEN ELECTIVES- MECHANICAL ENGINEERING

Subject Code: BME18OE1/B		Subject N	lame : INI	DUSTRL	AL ENG	INEERI			/ Lb/ TL	LT	/ Lr	P/R	С				
ME20OE1	H	Prerequis	site: Nil					E	Ty	3 0/		0/0	3				
L : Lecture T:Tut	torial			Learning	P : Proie	ect R : Re	search C	n C:Credits									
T/L/ETL : Theor					,												
OBJECTIVE: S	tudents	will learn:															
Various	1																
 Details of plant layout and material handlingdevices Basic concepts of ERP. 																	
COURSE OUTCOMES (COs): CO1 Various techniques of Work Measurement																	
	Various techniques of Work Measurement																
CO2	Details of Plant Layout and Material Handling devices																
CO3	Human factor design																
CO4	Unders	Understand wages and incentives															
CO5	Basic concepts of ERP																
Mapping of Cou	Mapping of Course Outcomes (COs) with Program Outcomes (Pos) & Program Specific Outcomes (PSOs)																
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12				
CO1	1	2		2		1			2	1			1				
CO2	1	1	2	2		2	1		1	2	1		1				
CO3	1	1				2	1		1	2	1		2				
CO4	1	1				2		2					1				
CO5	1	1			3	2			1	2			1				
COs / PSOs	P	SO1	PSC)2	PS	03	PS	O4									
CO1					•		1										
CO2			1			2	1										
CO3			1		2	2		1									
CO4						`		1									
CO5 3/2/1 indicates	atma===	th of ac	·olotio	2 11:-1	2 M			<u>1</u>		<u> </u>							
3/2/1 indicates	streng			3 – Higi	1, <i>2</i> – M10	earum,	I – LOW	/ 		1							
Category	Basic Sciences	Engineerin g Sciences	Humanitie s and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships /Technical	Soft Skills								

Subject Code:	Subject Name: INDUSTRIAL ENGINEERING	Ty/Lb/	L	T /	P/R	C
BME18OE1/		ETL		S.Lr		
BME20OE1	Prerequisite: Nil	Ty	3	0/0	0/0	3

UNIT- I: WORK STUDY & WORK MEASUREMENT

9 Hrs

9Hrs

Work study – Techniques – Productivity, Improving productivity by reducing work content- Human factors in work study. Method study – Basic procedure – Recording techniques - Micro-motion study, Threbligs, SIMO chart, Principles of motion economy. Work Measurement – Techniques – Time study – Allowances – Work sampling – PMTS – MTM.

UNIT- II: SITE SELECTION, PLANT LAYOUT & MATERIAL HANDLING

Site Selection: Importance of plant location – choice of site for location –State regulations on location – Industrial Estates. Plant layout: Types of factory buildings, OBJECTIVES of good plant layout, Principles, Techniques used, Types, Flow pattern, Line Balance, computerized plant layout. Material Handling: Functions, OBJECTIVES, principles, Devices used, Relation between plant layout and material handling.

UNIT- III: ERGONOMICS

9Hrs

Techniques – Analysis – Equipment Design – Fatigue – Motivation theory of Fatigue – Fatigue tests-Duties of a human factor Engineer – Human effectiveness improvement through ergonomics.

UNIT- IV: WAGES & INCENTIVES

9Hrs

Wages: Wage & salary policies, systems of wage payments, Principles of wage administration, National Wage Policy, Fair wage committee report, Need based minimum wage Incentives: Need, Incentive plans, Comparison of various Incentive plans, Administration of wage incentives.

UNIT- V: ENTERPRISE RESOURCE PLANNING (ERP)

9Hrs

Need for optimal use of Resources, MRP I & II, Supply chain Management, Evolution of ERP, BPR, Lean Manufacturing, Popular ERP Packages, Implementation of ERP, Benefits of ERP.

Total Hour: 45

TEXT BOOKS

- 1) O.P. Khanna, (2005) "Industrial Engineering and Management", Khanna Publishers.
- 2) K.K.Ahuja, "Industrial Management", Khanna Publishers.
- 3) Martand Telsang, "Industrial Engineering and Production Management".

REFERENCES

- 1) M.Mahajan, "Industrial Engineering and Production Management", Dhanpat Rai &CO.,
- 2) B. Kumar, (2005) "Industrial Engineering", Khanna Publishers.
- 3) International Labour Organization (ILO), (2004) "Introduction to Work study", Universal Publishing Corporation.
- 4) H. B. Maynard, "Industrial Engineering, Handbook", McGraw Hill Book Company, International Edition.
- 5) Marvin E. Mandel, "Time & Motion study", Prentice Hall, Private Limited, International Edition
- 6) James M Apple, "Principles of Layout & Materials Handling", Ronalds Press, International Edition.
- 7) V. K. Garg & N.K. Venkatakrishnan, (2004) "Enterprise Resource Planning, Concepts & Practice", Prentice Hall of India Private Limited.

CSE - ARTIFICIAL INTELLIGENCE - REGULATION 2020-2021

ıs-

Subject Code:	: Su	bject Na						Ту	/ Lb/ E	TL L	T / S.Lr	P/R	С			
DME190E3/I	D) 4E		FINITI	E ELEM	ENT M	ETHOD										
BME18OE2/E	BME															
200E2	Pr	erequisit	e: Nil						Ty	3	0/0	0/0	3			
L : Lecture T:7	Tutorial	SL	r : Supervi	ised Lear	ning P : 1	Project R	: Resear	ch C: Cre	dits T/L/I	ETL:						
Theory/Lab/Er	mbedded '					3										
OBJECTIVE																
			lement ana				•									
Metho	od of solv	ing one, t	wo and isc	-paramet	triceleme	ents.										
COURSE OU	TCOME	S (COs)														
CO1	To Impa	rt Knowle	edge about	Introduc	ction to F	inite Ele	alysis									
CO2	To impa	mpart knowledge about one-dimensional problems														
	_	npart knowledge about two dimensional scalar variable probl														
CO3	To impa	rt knowle	dge about	two dime	ensional s	scalar var	ariable problems									
CO4	To impa	rt knowle	dge about	two dime	ensional v	vector var	riable pro	blems								
CO.5																
CO5	To impa	mpart knowledge about isoparametr				nulation	and adva	nced topic	es							
Mapping of C	Course Ou	se Outcomes with Program Outcomes (Pos)														
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	O 12			
CO1	2	3	3	3	3	2	1	1	1	2	1		2			
CO2	2	3	3	3	3	2	1	1	1	2	1		2			
CO3	2	3	3	3	3	2	1	1	1	2	1		2			
CO4	2	3	3	3	3	2	1	1	1	2	1		2			
CO5	2	3	3	3	3	2	1	1	1	2	1		2			
Cos / PSOs	PS	01	PSC)2	PS	O3	PS	504								
CO1		2	3	}		3		2								
CO2		2	3	}		3		2								
CO3		2	3	}		3		2								
CO4		2	3	}		3		2								
CO5		2	3	3		3		2								
3/2/1 indicate	es streng	th of co	rrelation	3 – Hi	$\frac{1}{gh, 2-1}$	Medium	, 1 – L	ow		1	l					
		one	Soc		es		ਰ	/ Fechnical								
Cotogomy	es	Scie	pun	မွ	ctiv	es	oje	Tech								
Category	enc	Engineering Scien Humanities and Sc Sciences Program Core Open Electives Practical / Project					/ sd									
	Sci	eeri	niti es	E E	E E	Ele	cal	ıshi	kill							
	Basic Sciences	Engineering Sciences Humanities and Social Sciences Program Core				en	actio	Internships , T	Soft Skills							
	Ba	Eng Hun Scie Prog			Prc	ď	Pr	In	Sog							
						/										

Subject Code: BME18OE2/BM	Subject Name : FINITE ELEMENT METHOD	Ty / Lb/ ETL	L	T / S.Lr	P/R	С	
E20OE2	Prerequisite: Nil	Ту	3	0/0	0/0	3	

UNIT-I INTRODUCTION

9 Hrs

Historical Background – Mathematical Modeling of field problems in Engineering –Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems – Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

UNIT- II ONE-DIMENSIONAL PROBLEMS

9 Hrs

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of problems from solid mechanics including thermal stresses-heat transfer.

UNIT- III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

9Hrs

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite Element formulation – Triangular elements and Quadrilateral elements- Shape functions and element matrices and vectors. Torsion of Non circular shafts.

UNIT- IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

9Hrs

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Constitutive matrices and Strain displacement matrices – Stiffness matrix – Stress calculations - Plate and shell elements.

UNIT- V ISOPARAMETRIC FORMULATION AND ADVANCED TOPICS

9Hrs

Natural co-ordinate systems – Isoparametric elements – Shape functions for isoparametric elements – Numerical integration - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software- Introduction to Non Linearity.

Total Hours: 45

TEXT BOOKS:

- 1.J.N.Reddy, "An Introduction to the Finite Element Method", 3rd Edition, Tata McGrawHill,2005
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., NewDelhi, 2007.

REFERENCES:

- 1.Logan, D.L., "A first Subject in Finite Element Method", Thomson Asia Pvt. Ltd., 2002.
- 2.Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.
- 3.Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butter worth Heinemann, 2004.
- 4. Chandrupatla and Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition,

Subject Code: BME18OE3/BM		bjectNar	ne: AUTOM		VANCE ENGINI		}		Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
E20OE3	Pr	erequisit	e: Nil						Ту	3	0/0	0/0	0 3
L : Lecture T:T	utorial	Sl	Lr : Superv	vised Lea	rning P	: Project	R : Rese	earch C:	Credits T/L	/ETL :			
Theory/Lab/Em													
OBJECTIVE:													
Variou lubrica			ts, power to out various					is parts o	of the autom	obile, e	ngine co	oling	,
COURSE OUT	ГСОМЕ	CS (COs)	: (3-5)										
CO1	I.C	engine p	parts and d	ifferent (chassis								
CO2	En	gine cool	ling, lubric	ation an	d ignitio	n system	1						
CO3	W	orking of	transmiss	ion syste	m like g	ear box,	propeller	shaft an	d differenti	al.			
CO4	Kn	owledge	on Steerin	g, suspe	nsion sys	stem.							
CO5	Kn	Knowledge on working of brak		king syst	em and I	Hybrid V	ehicles a	and Fuel ce	lls				
Mapping of Co	ourse O	utcomes	with Prog	ram Ou	tcomes ((Pos)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12
CO1	3		2		1		3						
CO2		1		2									
CO3	3						2						
CO4	3		2		1		3						
CO5	3		2		1		3						
Cos / PSOs	PSO1		PSO2	•	PSO3	•	PSO4	•					
CO1		3				2							
CO2		2				2							
CO3		2	2	2		1							
CO4		2	2	2		1							
CO5		2	2	2		1		2					
3/2/1 indicate	s strenş	gth of co	orrelation	3 – H	ligh, 2 -	- Mediu	ım, 1 –	Low		1		-	
		SS	ial										
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						✓							

Subject Code:	SubjectName: ADVANCED AUTOMOBILEGINEERING	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C	
BME18OE3/BM		EIL					
E20OE3	Prerequisite: Nil	Ty	3	0/0	0/0	3	

UNIT- I: VEHICLE STRUCTURE AND ENGINES

9Hrs

Vehicle Chassis –types- layout- body-integral and chassis mounted body- vehicle specifications- power and torque requirements- choice of engine for different applications. Engine types and construction — Cylinder- cylinder head-Crank case-Piston- connecting rod – crank shaft-valves- liners-manifolds.

UNIT- II: ENGINE AUXILIARY SYSTEMS AND POLLUTION CONTROL

9Hrs

Fuel supply system to SI and CI engines—Electronic. Lubrication system-cooling system-ignition system-spark timing-firing order, electronic fuel injection system-types. Pollution from engines and their control-Exhaust gas recirculation - Catalytic converters, Indian emission standards.

UNIT-III: TRANSMISSION SYSTEMS

9Hrs

Clutches –single& multi plate –diaphragm-fluid coupling-torque converter Gear boxes-manual-sliding mesh- constant mesh-synchro mesh- automatic transmission. Universal joints-propeller shaft-Hotchkiss drive-torque tube drive. Differential-types- construction. Four wheel drive.

UNIT- IV: STEERING AND SUSPENSION SYSTEMS

9Hrs

Principle of steering-steering geometry and wheel alignment-steering linkages-steering gear boxes-power steering. Wheel and tyre construction-type and specification-tyre wear and causes-front axles arrangements. Suspension system-need and types-independent systems-coil-leaf spring-torsion bar-shock absorbers-air suspension.

UNIT- V: BRAKE SYSTEMS

9Hrs

Auto Electrical Components and Alternative Power Plants. Brake –need –types-mechanical-hydraulic-pneumatic-power brake-trouble shooting of brakes. Principles of modern electrical systems-battery-dynamo- starting motor- lighting- automobile conditioning. Electric hybrid vehicle and fuel cells.

Total Hours: 45

TEXT BOOKS

- 1) K.K.Ramalingam, (2007) "Automobile Engineering", SciTechPublications.
- 2) Kirpal Singh, (2012) "Automobile Engineering Vol-I&II".
- 3) R.B.Gupta, (2013) "Automobile Engineering", Satya Prakashan Publishing

REFERENCES

- 1) Joseph Heitner, "Automotive Mechanics", Affiliated East West PressLtd.
- 2) "Newton and Steeds, Motor Vehicles", ELBS -13EDITION.
- 3) William Crouse, (2007) "Automotive Mechanics", Tata McGrawHill.

Subject Code:	Su	ıbject N	lame : Il	NDUST	TRIAL	ROBO	OTICS		Ty / Lb/ ETL	L	T / S.L	P/ R	С			
											r					
BME180E4	/ Pr	erequis	site: Nil						Ty	3	0/0	0/0	3			
BME20OE4																
L : Lecture T							roject I	R: Rese	earch C:C	Credits						
T/L/ETL : Tl																
OBJECTIV	E: OB.	JECTIV	VES: Stu	idents v	vill lear	'n										
			f an indu					l inrobo	ots							
			method													
COURSE O																
CO1			ge of basi													
CO2							pect to ro									
CO3		-	-		_			on conce	pts and it	s applica	ations.					
CO4		Knowledge of writing programme for robot.														
CO5	K	Knowledge of able to design robot cell and its applica							ıs.							
Mapping of	Course	ourse Outcomes with Program Outcomes (Pos)														
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	12			
CO1	3	3	3	1	1	1	3	2	1		3					
CO2	3	3	3	3	3	1	1	1	3	2	1		3			
CO3	3	3	3	3	3	1	1	1	3	2 1 3						
CO4	3	3	3	3	3	1	1	1	3 2 1 3							
CO5	3	3	3	3	3	1	1	1	3	2	1		3			
Cos / PSOs	PS	SO1	PS	02	PS	O3	PS	SO4								
CO1		1	1			1		3								
CO2		1	1			1		3								
CO3		1	1		-	1		3								
CO4		1	1			1		3								
CO5		1	1			1		3								
3/2/1 indicate	s stren	gth of co	rrelation	3 – H	igh, 2 –	Mediu	m, 1 –	Low	-1		l .					
					<u> </u>			/ schni								
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Practical / Project							Soft Skills							

Subject Code: BME18OE4/BM E20OE4	Subject Name : INDUSTRIAL ROBOTICS	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Nil	Ty	3	0/0	0/0	3

UNIT-I: INTRODUCTION

9 Hrs

Definition of a Robot – Basic Concepts – Robot components –manipulator-configurations – joints- degree of freedom. Types of Robot Drives – Basic Robot Motion types – Point to Point Control – Continuous Path Control.

UNIT-II:COMPONENTSANDOPERATIONS9 Hrs

Basic Control System Concepts – open loop and closed loop control-Control System Analysis – Robot Actuation and Feed Back, Manipulators – Direct and Inverse Kinematics, Co- ordinate Transformation – Brief Robot Dynamics, Types of Robot and Effectors – Grippers – Tools as End Effectors – Robot / End Effort Interface.

UNIT- III: SENSING ANDMACHINEVISION

9Hrs

Range Sensing – Proximity Sensing – Touch sensing – Force and Torque Sensing. Introduction to Machine Vision – functions and applications.

UNIT-IV:ROBOTPROGRAMMING 9Hrs

Methods – Languages –programming for pick and place applications-palletizing. Capabilities and Limitation – Artificial Intelligence – Knowledge Representation – Search Techniques – AI and Robotics.

UNIT- V:ROBOT CELL DESIGNANDAPPLICATIONS 9Hrs

Robot cell design-types and control. Applications of Robots –process Applications in welding and painting – Assembly applications– Material Handling applications.

Total Hours: 45

TEXT BOOK

1) K. S. Fu, R. C. Gonalez, C.S.G. Lee, "Robotics Control Sensing Vision and Intelligence", McGraw Hill International Edition, 10987.

REFERENCES

- 1) Mikell P. Groover, Mitchell Weiss, (2008) "Industrial Robotics, Technology, Programming and Application", Tata McGraw Hill International Editions, 10986.
- Richard D. Klafter, Thomas A. Chonieleswski and Michael Negin, (1989)
 "Robotic Engineering An Integrated Approach", Prentice Hall Inc., Englewoods Cliffs, NJ, USA,109809.

Subject			Name:		NEWA				Ty / Lb/		-	P	C
Code:	S	OURC	CESOF		-	ED O	. 7		ETL		S.L	/	
DI FELOOF					EN	ERG	<u>Y</u>					R	<u> </u>
BME18OE5 BME20OE5	o/ Pr	erequi	site: Nil						Ty	3	0/0	0/0	3
L: Lecture 'T/L/ETL: T							P: Proj	ect R:	Research	ı C:Cre	dits		
OBJECTIV	•				<i>J</i>								
					racteris	stics of	differe	nt rene	wable ei	nergysy	stems.		
			ntechni										
COURSE ()								
CO1			e on prin			energy	and its	measur	ement.				
CO2	Kr	nowledg	ge on Sola	ar energ	y appli	cations	in vario	us field	ls.				
CO3									wind end	ergy.			
CO4			ge on, Oc										
CO5									lectric ge	nerator	MHD at	nd Fu	<u>-1</u>
COS	ce		,c on Dire	oct chei	gy com	CISIOIIS	inc 11	ici ilio c	iceti ie ge	nerator,	WIIID ai	ia i u	C1
Mapping of			comes w	ith Pr	ogram	Outco	mes (I	POs)					
COs/POs		PO2		PO4			PO7	PO8	PO9	PO10	PO11	PC	12
CO1	2						_						
CO2		3	3										
CO3			2										
CO4			2	2		2	3			2	2	2	
CO5			2	2		2	3			3	3	3	
COs/	P	SO1	PS	O2	PS	SO3	P	SO4					
PSOs													
CO1		3	2										
CO2	3	3	3		2	2							
CO3	(3	2										
CO4	(3	2		2	2							
CO5		3	2		2	2		2					
3/2/1 indicat	es strei	ngth of	correlati	on 3-	High,	2 – Me	dium,	1 – Lov	V				
					<i>J</i> /		Ç	. 5					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Took	Soft Skills				
						✓							

Subject Code:	SubjectName: SOURCESOF	RENEWABLE ENERGY	Ty / Lb/ ETL	L	T / S.L r	P / R	С
BME18OE5/ BME20OE5	Prerequisite: Nil		Ту	3	0/0	0/0	3

UNIT- I PRINCIPLES OF SOLARRADIATION

9Hrs

Role and Potential of new and renewable source, the solar energy option, Environmental impact of solar power, Solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface, Instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT- IISOLARENERGY

9Hrs

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors- classification- orientation and thermal analysis-advanced collectors.

SOLAR ENERGY STORAGE: Different methods, sensible, latent heat and stratified storage, solar ponds.

Solar applications-solarheating/coolingtechniques, solar distillation and drying, photovoltaic energy conversion.

UNIT- III WIND ENERGYANDBIOMASS

9Hrs

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, erformance characteristics. BIOMASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-Gas digestors, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation, economic aspects.

UNIT- IV GEOTHERMAL, TIDAL ANDWAVEENERGY

9Hrs

GEOTHERMAL ENERGY: Resources, types of wells, methods of harnessing OTEC: Principles, utilization, setting of OTEC plants, thermodynamic cycles.

TIDAL AND WAVE ENERGY: Potential and conversion techniques, mini hydel power plants, and their economics.

UNIT- V: DIRECTENERGYCONVERSION

9Hrs

Need for DEC, Carnot cycle, limitations, principles of DEC. Thermo-electric generators, MHD Power generators, principles, working, Fuel cells: principle, working -types - Selection of fuels and operating conditions.

Total Hours: 45

TEXT BOOKS

- 1) G.D.Rai, (2004) "Non-Conventional Energy Sources" KhannaPublishers.
- 2) Ashok V Desai, (2003) "Non-Conventional Energy", Wiley Eastern.
- 3) K.M.Mittal, (2007) "Non-Conventional Energy Systems", WheelerPublishing.
- 4) Ramesh & Kumar, (2007) "Renewable Energy Technologies", Narosa PublishingHouse.

REFERENCES

- 1) Twidell & Weir, (2006) "Energy Sources", Taylor & Francis
- 2) Sukhame, (2009) "SolarEnergy".

Subject Cod	e: Si	ubject N	ame : R					R	Ty / Lb/	L	T /	P /	C
DME190E6/D) N /			C	CONDI	IIONI	NG		ETL		S.Lr	R	
BME18OE6/B E20OE6		rerequis	ite: Nil						Ty	3	0/0	0/0	3
L : Lecture T				vised I	earnino	P · Pro	niect R :	Resea	rch C:Cre		0/0	0/0	
T/L/ETL : Th						, 1 . 1 10	geet It .	rescu	ion e.e.e	ares			
			dents wil										
➤ The w	orking	g princip	le of refri	gerator	s and ai	r condi	tionings	systems	S.				
	-		linrefrige										
			s to reduc		ıl warm	ing .							
COURSE O		`											
CO1									operties of				
CO2		Knowledge on different types of controlling and balancing of									tem comp	onents	
CO3		Knowledge on Pressure and temperature controlling as Knowledge on Psychometric properties and A/C syste							tem balanc	ing			
CO4		<u> </u>											
CO5		nowledge of Applications of Outcomes with Programmer				cryogenic engineering in various Med				nical er	ngineering	fields	
								1=00					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO	12
CO1	3	2	2	2		2	3	2		1			
CO2	3		2 2 2			2	3	2		1			
CO3	3	2	2	2		2	3	2		1			
CO4	3	2	2	2		2	3	2		1			
CO5	3	2 2 2 2 3 2								1			
COs / PSOs	P	SO1	PSC			803	PS	SO4					
CO1		3	2			2							
CO2		3	2			2							
CO3		3	2			2							
CO4		3	2			2							
CO5	<u> </u>	3	2			2							
3/2/1 indicates	s strenş	gth of co	rrelation	3 – Hi	gh, 2 – N	Medium	, 1 – Lo)W		T			
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core				Open Electives	Practical / Project	Internships / Technical	Soft Skills				
						√							

Subject Code: BME180E6/BM	Subject Name : REFRIGERATION AND AIR CONDITIONING	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
E20OE6	Prerequisite: Nil	Ty	3	0/0	0/0	3

UNIT- I: REFRIGERATION CYCLES AND REFRIGERANTS

9 Hrs

Vapour Compression Réfrigération Cycle-Simple Saturated Vapour Compression Refrigeration Cycle. Thermodynamic Analysis of the above. Refrigerant Classification, Designation, Alternate Refrigerants, Global Warming Potential & Ozone Depleting Potential Aspects.

UNIT-II: SYSTEM COMPONENTS

9 Hrs

Refrigerant Compressors – Reciprocating Open & Hermetic Type, Screw Compressors and Scroll Compressors – Construction and Operation Characteristics. Evaporators – DX Coil, Flooded Type Chillers Expansion Devices - Automatic Expansion Valves, Capillary Tube & Thermostatic Expansion Valves. Condensing UNIT-s and Cooling Towers.

UNIT- III: CYCLING CONTROLS AND SYSTEM BALANCING

9 Hrs

Pressure and Temperature Controls. Range and Differential Settings. Selection and Balancing of System Components-Graphical Method.

UNIT- IV: PSYCHROMETRY & AIR CONDITIONING

9 Hrs

Moist Air Behavior, Psychrometric Chart, Different Psychrometric Process Analysis. Summer and Winter Air-conditioning, Cooling Load Calculations, Air Distribution Patterns, Dynamic and Frictional Losses in Air Ducts, Equal Friction Method, Fan Characteristics in Duct Systems.

UNIT- V: INTRODUCTION TO CRYOGENIC ENGINEERING

9 Hrs

Introduction to cryogenic engineering-applications of cryogenics in various fields-low temperature properties of materials- mechanical, thermal, electrical and magnetic properties- properties of cryogenic fluids-cryogenic fluid storage and transfer systems- cryogenic insulation.

Total Hours: 45

TEXT BOOKS

- 1) W.F.Stocker and J.W.Jones, (2009) "Refrigeration & Air Conditioning", McGraw Hill Book. Company.
- 2) Randall F.Barron, (1985) "Cryogenic systems", Oxford University press.

REFERENCES

- 1) R.J.Dossat, (2005) "Principles of Refrigeration", John Wiley and Sons Inc., 6th edition.
- 2) Manohar Prasad, (2009) "Refrigeration and Air Conditioning", Wiley Eastern Ltd.

Subject Cod	e: Su	bject N	ame : C	OMPO	SITE N	MATE	RIALS		Ty / Lb/		T /	P /	C
BME18OE7/E	,								ETL		S.Lr	R	
ME20OE6		erequis	ite: Nil						Ту	3	0/0	0/0	3
L : Lecture T	:Tutoria	al SL	r : Super	vised L	earning	P : Pro	ject R	Resear	rch C:Cre	dits			
T/L/ETL : The	neory/La	ab/Emb	edded Th	eory ar	nd Lab								
OBJECTIV													
Differ					facturin	gmetho	ods						
			f compos										
			n need ar		cations	of com	positen	naterial	S.				
COURSE O													
CO1									g methods				
CO2			e mechar		_				aterials				
CO3			nd the de										
CO4			e on moul										
CO5						ns of statics mechanical in var		various	Mechanica	ıl engine	eering fiel	ds	
			nes with Progra						T 700	D		150	
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11)12
CO1	2	2	_	3			3		3			2	
CO2	2	2	2	3			_		3			2	
CO3	2	2	2	3			3	3	3			2	
CO4						1							
CO5	700	101	TO C.		D C	1	700	10.4					
Cos / PSOs		501	PSO			03		SO4					
CO1		2	3		3		2						
CO2		1	3		3		3						
CO3		1	3		3								
CO4													
CO5	atma===41	h of	eolotia	2 TT!=	 	[a di	1 T						
3/2/1 indicates	strengt	u oi cori		૭ – HIG 	u, <i>4</i> – IVI 	earum,	1 - FO			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Tech	Soft Skills				
					√								

Subject Code:	Subject Name : COMPOSITE MATERIALS	Ty / Lb/ ETL	L	T / S. Lr	P / R	С
BME180E7/ BME200E6	Prerequisite: Nil	Ту	3	0/0	0/0	3

UNIT-I:INTRODUCTION9Hrs

9 Hrs

Limitations of Conventional Materials- Definition of Composite Materials- Types and Applications.

Characteristics

UNIT-II:MATERIALS

Fibers- Materials- Fiber Reinforced Plastics- Thermo set Polymers- Coupling Agents, Fillers and Additives- Metal Matrix and Ceramics Composites.

9Hrs

UNIT-III: MANUFACTURING

9Hrs

Fundamentals- bag moulding- compression moulding pultrusion- filament winding- other manufacturing process-quality inspection and non-destructive testing.

UNIT- IV: MECHANICSANDPERFORMANCE

9Hrs

Introduction to Micro-mechanics- Unidirectional Lamina-Laminates- Inter laminar Stress- Statics Mechanical Properties- Fatigue Properties- Impact Properties- Environmental Effects- Fracture Mechanics and Toughening mechanisms, Failure Modes

UNIT-V:DESIGN 9Hrs

Failure Predictions- Design Considerations- Joint Design- Codes- Design Examples. Optimization of Laminated Composites- Application of FEM for Design.

Total Hours: 45

TEXT BOOKS

- 1) P.K.Mallick, (2006) "Fiber-Reinforced Composites", Monal Deklatr Inc., NewYork.
- 2) B.D.Agrawal and L.J.Broutmam, (2006) "Analysis and Performance of Fiber Composites", John Wileyand Sons, New York.

REFERENCES

- 1) Micael hyer, (1998) "Stress Analysis of Fiber- Reinforced Composite Materials", Tata McGrawHill.
- 2) Ronald Gibson, (2007) "Principles of Composite Material Mechanics", Tata McGrawHill.

COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE) OPEN ELECTIVE

LABS

This page intentionally left blank Please Turn Over

Subject Cod BME18OL1/B ME20OL1		ubjectN	lame:	INTE		COMB & STE	USTIO	N Ty	/ Lb/	L	T / S.Lı	. P/	R	C
	Pr	erequis	ite: Nil]	Lb	0	0/0	3/0)	1
L : Lecture T T/L/ETL : Th			r : Superedded Th			g P : Pro	oject R	: Resear	ch C:0	Cred	its			
OBJECTIV														
> To ev					n turbii	nes and	ICengi	nes.						
COURSE O														
CO1			erformance											
CO2			erformance				esel engi	ines						
CO3		-	erformance		_									
CO4			ulti cylinde											
CO5		Knowledge on performance test of diesel engines with different for				t fuels	-							
Mapping of	Course Outcomes with Program Outcomes (Pos)													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6			PO	9]	PO10	PO11	P(12	
CO1	3	2		2	1		2							
CO2	3	1		2			2							
CO3	2			3			3							
CO4	3	1		2			2							
CO5	2			3			3							
Cos / PSOs	PS	501	PS	02	PS	SO3	PS	SO4						
CO1	:	3	2	,										
CO2	2	2	2	,										
CO3		2	2	r										
CO4	,	2	2											
CO5	2	2	2	•										
3/2/1 indicates	s streng	th of co	rrelation	3 – Hi	gh, 2 – I	Medium	, 1 – L	ow						
Category	Basic Sciences	Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Practical / Project Internships /		Internships / Technical Skill	Soft Skills	Open Elective	Lab/ Practical							
						√	<u>√</u>							

Subject Code:	SubjectName:	INTERNALCOMBUSTION ENGINES & STEAMLAB	Ty / Lb/ ETL	L	T / S.Lr	P/R	C
BME18OL1/			EIL				
BME20OL1	Prerequisite: Nil		Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Study of IC engines components and loadingdevices.
- 2. Valve timing and port timing diagrams of 2stroke and 4stroke petrol and dieselengines
- 3. Performance test on single cylinder 4-stroke petrolengine.
- 4. Performance test on single cylinder 4-stroke dieselengine.
- 5. Heat balance test on 4-stroke single cylinder dieselengine.
- 6. Study of steam generators and turbines.
- 7. Performance and energy balance test on a steamgenerator.
- 8. Performance and energy balance test on a steamturbine.
- 9. Performance test on a steamcondenser

Total Hours: 45

Subject Code	e: Su	ıbject N	ect Name : COMPUTER AIDED D AND ANALYSIS					N	Ty / Lb/ ETL		T / S.Lr	P/ R	C		
BME18OL2		erequis	ite: Nil						Lb		0/0	3/0	1		
L : Lecture T T/L/ETL : Th	:Tutori					; P : Pro	ject R :	Resear	ch C:Cre	dits					
OBJECTIVI	ES:			-											
> To ge mode	t practi lingsoft		wledge of	f model	ing of v	arious	machine	e parts u	ising Aut	o CAD	and othe	r			
COURSE O			COs): (3	B- 5)											
CO1			the benefit		puter aid	ed design	1								
CO2	Ur	derstand	the method of dimensioning and symbols												
CO3	At	le to drav	draw the machine parts in CATIA Software.												
CO4	Ur	nderstand	stand the knowledge on design packages (Solid works and					ks and C	ATIA Soft	ware's)					
CO5	То	analyze the material properties and deflections (Ansys))								
Mapping of	Course	ourse Outcomes		Progr	am Ou	tcomes	(Pos)								
Cos/Pos	PO1	PO2 PO3 PO4			PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1	3	3	3	3	3	3		2	2	3	3	2			
CO2	3	3	3	3	3	Н		2	2	3	3	2			
CO3	3	3	3	3	3	3		2	2	3	3	2			
CO4	3	3	3	3	3	3		2	2	3	3	2			
CO5	3	3	3	3	3	Н		2	2	3	3	2			
Cos / PSOs	PS	SO1	PSC) 2	PS	O3	PS	SO4							
CO1		3	3		ĺ.	3									
CO2		3	3		ĺ.	3									
CO3		3	3			3									
CO4		3	3			3									
CO5		3	3			3									
3/2/1 indicates	s streng	th of co	rrelation	3 – Hi	gh, 2 – I	Medium	, 1 – Lo	ow		l		ı			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic	Soft Skills	Open Elective					
								•							

Subject Code:	Subject Name : COMPUTER AIDED DESIGN	Ty/Lb/	L	T /	P /	C
DME1901 3/	AND ANALYSIS LAB	ETL		S.Lr	R	
BME18OL2/ BME20OL2	Prerequisite: Nil	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- Introduction to computer Aided Design and Drafting packages. 2D Drawing using Auto
 CAD
- 2. Basic commands in AUTOCAD-Utility, draw, modify, and display commands. 2D sectional views, part drawing, assembly drawing, detailed drawing.
- 3. Dimensioning, annotations, symbols Welding, Surface finish, threads, Text, Bill of Materials, Title Block.
- Exercises Knuckle joint, Gib & Cotter joint, Screw Jack,
 Foot step bearing. Orthographic views, Isometric views.
- 5. Solid modeling features-Boolean operations.

Structural analysis of beams with different boundary conditions using FEA software

Total Hours: 45

SubjectCode:	Subject Name: MECHANICAL MEASUREMENTS & METALLURGY LAB	Ty / Lb/	L	T / S.Lr	P/R	C
BME18OL3/BM		ETL		5.21		
E20OL3	Prerequisite: Nil	Lb	0	0/0	3/0	1

L: Lecture T:Tutorial SLr: Supervised Learning P: Project R: Research C:Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

OBJECTIVES: Students will learn

- ➤ Linear and angular measurement methods
- ➤ Calibration of measuring instruments
- Micro structures of various ferrous and non ferrous materials using microscopes.
- ➤ Heat treatment processes of materials.

course outcor													
CO1									asurement				
CO2	U	nderstar	nd and app	oly the v	arious ir	nstrumer	nts for a	ngular n	neasureme	nts.			
CO3									precision		ts		
CO4							ferrous and non-ferrous materials						
CO5			ge of vari										
Mapping of C						es (Pos)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	1	2	2	2	2	2			2	
CO2	3	2	2	1	2	2	2	2	2			2	
CO3	3	2	2	1	2	2	2	2	2			2	
CO4	3	2	2	1	2	2	2	2	2			2	
CO5	3	2	2	1	2	2	2	2	2			2	
Cos / PSOs	PS	01	PSC)2	PS	O3	PS	SO4					
CO1			2		4	2		3					
CO2			2			2		3					
CO3			2		2	2		3					
CO4			2			2		3					
CO5			2			2		3					
3/2/1 indicate	s streng	th of co	rrelation	3 – Hi	gh, 2 – N	Medium	, 1 – L	ow					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Open Elective			
										•			

SubjectCode:	Subject Name: MECHANICAL MEASUREMENTS & METALLURGY LAB	Ty / Lb/	L	T / S.Lr	P/R	C
BME18OL3/BM		ETL		5021		
E20OL3	Prerequisite: Nil	Lb	0	0/0	3/0	1

MEASUREMENTS LAB EXPERIMENTS

- 1. Measurement of Dimensions using Vernier HeightGauge
- 2. Measurement of Dimensions using Vernier DepthMicrometer
- 3. Measurement of Gear Nomenclature using Gear ToothVernier
- 4. Angular Measurement using Vernier Height Gauge and SineBar
- 5. Angular Measurement using Sine Bar, Slip Gauge and DialGauge
- 6. Thread Measurement using ProfileProjector
- 7. Measurement of Dimensions using Tool MakersMicroscope
- 8. Angular measurement using BevelProtractor
- 9. Calibration of Dial Gauge using SlipGauge
- 10. Flatness of given work piece using Autocollimator

STUDY EXPERIMENTS

- 1. Introduction tometallurgy
- **2.** Specimenpreparation
- 3. Metallurgical microscope
- **4.** Iron carbonsystem
- **5.** Time temperature transformation diagram(TTT)

MICROSTRUCTURE ANALYSIS

- 1. Brass
- 2. Copper
- **3.** Graycast-iron
- 4. Malleablecast-iron
- 5. Nodular iron
- **6.** Mild-steel, Stainless-steel and High speedsteel

HEAT TREATMENT PROCESS

- 1. Jominey quenchtest
- 2. Hardness ofsteel
- **3.** Creeptest

Total Hours: 45

COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE) Dr APJ Abdul Kalam Center for Research

Dr.A.P.J Abdul Kalam CoE in Innovation & Entrepreneurship

					am CoE in				_				1			
Subject Code:		Subject Nan	oject Name : TECHNICAL ENTREPRENEURSHIP		'	Гу/		T /								
BMG18OE1/	BMG2]	L b /	L	\mathbf{SL}	P/R	C		
0OE1/									F	TL		r				
BMG13E12/	BMG20	Prerequisite	: None						Е	TL	2	0/1	2/0	3		
E12										IL	2	0/1	2/0	3		
L : Lecture T				_		R : Resear	rch C	: Credits	S							
T/L/ETL: The	eory / Lab /	Embedded	Theory	and La	b											
ORIECTIVES	· At the end	l of the cours	a tha la	ornor wi	ll be able to											
				the learner will be able to w to understand customers views.												
•				ew to understand customers views. Itions for the identified problems												
		p and small					f lean	approac	ch							
		ns of custon														
		ve pitch and														
COURSE OU	TCOMES ($(Cos): \overline{(3-3)}$	5)Stude	ents com	pleting the	course we	re ab	le to	-	-		-				
CO1	Identify B	Business Op	portuni	ity, Und	erstand Pro	blems & l	Provi	le soluti	ons &	carry o	ut Desig	gn Thin	king Pr	ocess.		
CO2	-															
CO3						and prepare Value proportion can competitive analysis & perform pro										
												L				
CO4									oricing strategies							
C05	Compose	positioning	statem	ent for t	he product	& build d	igital	presenc	e, plaı	ning &	budget	ing				
Mapping of C	ourse Outc	omes with P	rogran	n Outco												
COs/POs	PO1	PO2 P	PO3	PO4	PO5	PO6	PO7	PC	08	PO9	PC 0)1 P(D11	PO12		
CO1						2				2				2		
CO2	3	3	3	3	3	3	2	,		3	2	2	3			
CO3	3	3	3	2	2	2					2	2	1			
CO4	2		2		2	1			3		3	3				
CO5	3	3	3	3	3	2				2	- 2	2				
Cos /	PS	01	F	PSO2	PS	SO3		PSO ₄	4							
PSOs							$oxed{oldsymbol{ol}}}}}}}}}}}}}}}}}}$									
CO1				2		2										
CO2				2		2	\perp									
CO3			- 2	2		2										
CO4			2	2	2	2										
CO5				2	2											
3/2/1 indica	tes streng	th of corre	lation	3 – Hi	igh, 2 – Medium, 1 – Low				•	•	LI CONTRACTOR OF THE PROPERTY					
									_							
<u>></u>	Ş	Š	Humanities & Social	. s	я	a s		SS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ì	Internships/	g	ills			
Category	Basic Sciences	Engg Sciences	Humanit & Social	Sciences	gram gram tive		Practical	Project	rns!	Technical Skills	Soft Skills					
Cat	Basic	Eng Scie	Tun S &	Scie	Program core Program Electives Open		7.30	Proj	Inte	Techn Skills	šoft					
			-)		$-\!\!\!\!+$. • • 1				

Subject Code : BMG18OE1/BMG2 0OE1/	Subject Name : TECHNICAL ENTREPRENEURSHIP	Ty/ Lb/ ETL	L	T/ SL r	P/R	C	
BMG13E12/BMG20 E12	Prerequisite : None	ETL	2	0/1	2/0	3	

UNIT -I DISCOVER YOURSELF & IDENTIFY PROBLEMS WORTH SOLVING 9 hrs

Effectuation – Find your flow – Entrepreneurial style – How to identify Business opportunity - find problems worth solving – Methods of finding & understanding problems - How to run problem interview to understand customer's world view – Design thinking – Process & examples – Idea Generation (DISRUPT) – GOOTB

.

UNIT -II CUSTOMER SEGMENT, VALUE PROPORTION & LEAN CANVAS 9 hrs

Difference between consumer and customer – Market types – Segmentation & Targeting – Defining the personas – understanding early adopters & customer adoption pattern – early innovators for startups – creative solutions for identified problems – Deep dive into gains, pains & jobs to be done (value proportion canvas) – identify UVP using VPC – outcome driven innovation (I min customer pitch) – Basics of Lean approach & Canvas – Types of business models.

UNIT -III SIZING THE OPPURTUNITY & MVP

9 hrs

Introduction to risks –Documents & assumptions – Build solution – Does the solution solve customer problems – Problem – solution test – Difference between a start up venture & small business – industry analysis – competition analysis – Blue ocean strategy – building MVP (document & validation of assumptions – lean feedback loop & MVP/Javelin board – MVP interviews – product market fit test

UNIT -IV REVENUE STREAMS

9 hrs

Basics of how companies make money – income, cost, gross and net margin – primary and secondary revenue streams – value, price & costs – different pricingstrategies – product costs & unit costs – basics of unit costs – finance for business ideas – various sources of funds & its pros and cons – investor expectations – pitching to investors & corporates – shared leadership – role of good team venture's success – roles & responsibilities – pitch a candidate to join a start up – collaboration tools and techniques

UNIT - V MARKETING & SALES

9 hrs

Difference between product brand & link between them – positioning statement for the product – building digital presence and leveraging social media – creating company profile page – measure effectiveness of selected channels – budgeting and planning – sales planning – targets – USP – art of sales pitch – follow up and closing sale – importance of project management – work flow – delegation of tasks – basics of business regulations of starting and operating business – compliance and proper documentation.

PRACTICAL COMPONENT: CAPSTONE PROJECT PRESENTATION & EVALUATION ADDITIONAL SKILL REQUIREMENT: ONE MODULE THROUGH UEDEMYSUCH AS PYTHON OR .ASP OR ROBOTICS OR ANY OTHER COURSE THAT IS DEEMED ESSENTIAL.

TotalHours: 45

				(A)	IX 1 11	ICIAL	INIE	LLIG	EIIC.	L')				
Subject Code		Subjec	t Nan	ame :ADVANCED P			GRAM II	N		Ty/		T /		
BMG18OE2 0OE2	2/BMG2	ENTE	REPRI	ENEU	JRSHIP	•				Lb/ ETL	L	SL r	P/R	C
		Prereq	uisite	: WF2	201					ETL	2	0/1	2/0	3
RelookUnderstAnalyze	heory / La ES: tand basi the probl tand the re optimiz v the finar UTCOME	cs of bullem state need for cost neighbors, te	dgeting rementer sales and cochnol	ng and t and pitch operat	ory and lead plann refine to the cing cional experience.	Lab ing he solutio	n		.: Credi	ts				
CO1	Revisit	their b	usines	ess models and improve their business ideas			eas.							
CO2	Explor	e vario	us rev	revenue streams, new channels & partnership			hips							
CO3	Test th	e price	elastic	ticity & analyze financial modeling										
CO4				ouild teams beyond founders										
C05	Use ted	chnolog	y to bi	uild a	nd grov	v business	}							
Mapping of	Course (Outcom	es wit	h Pro	gram O	utcomes	(POs)							
COs/POs	PO1	PO2	PO3		PO4	PO5	PO6	PO7	PO8	PO9	Po	01	PO11	PO12
CO1	3	3	2	2	2	2		3		3		3		1
CO2			3	3	2			2					3	
CO3					3		2						3	
CO4			3	3	2	2	2	2	2	3				1
CO5	3		3	3	2	3	2		1			3		2
Cos / PSOs	P	SO1		PSC)2		SO3]	PSO4					
CO1				2			2							
CO2				2			2							
CO3				2			2							
CO4				2		2								
CO5				2			2							
3/2/1 indica	tes stren	gth of co	orrela	tion 3	3 – High	h, 2 – Medium, 1 – Low		Low	-		ı			
Category	Basic Sciences	Engg	Sciences	Humanities & Social	Sciences	Program core Program Electives		Open	Electives	Practical / Project	Internships/	Technical Skills	Soft Skills	

Subject Code : BMG18OE2/BMG2 0OE2	Subject Name :ADVANCED PROGRAM IN ENTREPRENEURSHIP	Ty/ Lb/ ETL	L	T/ SL r	P/R	C	
	Prerequisite : WF201	ETL	2	0/1	2/0	3	

UNIT -I GROWTH, EXPANSION & SCALING

9 hrs

Growth stage and start up phase – revisiting business model and develop few variants – additional customer segments – evaluation of business models for new customer segments – relook of problem statement and repositioning for scalability – additional ways to monetize.

UNIT -I SCALING & STRATEGY

9 hrs

Gain traction beyond early customer – defining and measuring traction – cost of new customer acquisition – customer life time value – identify wastes and what's important for traction – bullseye framework – identifying channels – measurement of effectiveness of selected channels

UNIT -III SALES PLANNING

9 hrs

Budgeting & Planning – stabilizing key revenue streams – additional revenue streams – exploring new channels and partnerships – sales planning and setting targets – unique sales proportion – art of sales pitch – building a professional team – sales compensation and incentives

UNIT – IV FINANCIAL MODELLING

9 hrs

testing price elasticity – optimizing cost and operational expenses – advanced concepts in unit costing – financial modeling of venture growth – analyzing competitor and peer's financial models – various sources of funding – investors and lenders expectations - pitch practice – Building teams beyond founders – basics of compensation, incentives and stock options

UNIT – V TECHNOLOGY PLANNING

9 hrs

Identify technology needs – cost of using technology to build and grow the business – Technology as a differentiator and competitive weapon – overview of legal issues – importance of getting professional help – importance of being compliant and keeping proper documentation – patents and intellectual property - trademarks

PRACTICAL COMPONENT: CAPSTONE PROJECT - PITCH YOUR VENTURE

Total Hours: 45 Hrs

T/L/

L T/SLr P/R

Subject Name :Internet of Things and its Applications

Open Electives-ECE

Subject Code:

BEC18OE1/BES20OE		ibject Main	ic imici	ilet of 11	migs and	u its ripp	meation,		ETL		1/BLi	1710	
		erequisite:							T	3	0/0	0/	0 3
L : Lecture T : Tutorial T/L/ETL : Theory/Lab/l	SLr : Embedd	Supervised led Theory	Learnin and Lab	g P:Pro	oject R:	Research	n C: Cred	lits				•	•
OBJECTIVE:													
 To study basics 													
To study IoT w			ment.										
To study IoT a													
COURSE OUTCOME		s) : (3-5)											
The students will be abl CO1	e to	Explore ba	eice con	cents of	technolo	gy of IoT	,						
CO2		Understan				gy or lor							
CO3		Manage sy											
CO4		Interface e	embedde	d system	with IoT								
CO5		Learn new	applicat	tions base	ed on Io	Γ.							
Mapping of Course Ou	utcomes	s with Prog	gram Ou	tcomes	(POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 P	011	PO12
CO1	3	3	3	3	3	2	3	2	2	2		3	3
CO2	3	2	2	3	3	2	2	2	2	2		3	3
CO3	3	2	3	3	3	2	2	2	2	2		3	3
CO4	3	3	2	3	3	2	2	2	1	2		3	3
CO5	3	2	3	3	3	2	2	2	1	2		3	3
COs / PSOs	ŀ	PSO1		02		03		SO4					
CO1 CO2		3		3		3		3					
		3		3		2		3					
CO3 CO4		3		3 3		<u>2</u> 2		3 3					
CO5		2		3		<u>-</u> 1		3					
3/2/1 indicates Strengt	h of Co					•	,	<u> </u>		1			
			<u> </u>	ĺ									
gory Racio Crianos	Dasic Sciences	Engg Sciences	Humanities & Social Sciences	Program core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills	Category	Basic Sciences		Engg Sciences
Category						V							

Subject Code: BEC18OE1/BEC20OE1	Subject Nan	ne :Inter	net of Th	ings and	d its App	lications	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite:						T	3	0/0	0/0	3

UNIT I INTRODUCTION TO INTERNET OF THINGS

9 Hrs

Definition and Characteristics of IoT – Things in IoT – IoT Protocols – Logical Design of IoT – IoT enabling technologies – IoT Levels.

UNIT II DOMAIN SPECIFIC IoT

9 Hrs

Home Automation – Cities – Environment – Energy – Retail – Logistics – Agriculture – Industry – Health and Life style–SDN and NFV for IoT.

UNIT III IoT SYSTEM MANAGEMENT AND CLOUD

9Hrs

Need for IoT System Management - SNMP - NETOPEER - IoT design methodology - Xively - Django- Amazon Web for IoT - SkyNetIoT.

UNIT IV IoT PHYSICAL DEVICES

9Hrs

Raspberry Pi - Raspberry Pi Interfaces - Arduino boards - Other IoT devices - Intel Galileo Arduino board Specification.

9 Hrs

UNIT V IoT APPLICATIONS

Applications based on IoT - Smart Cities -Smart Home and Buildings -Smart Energy and the Smart Grid - Smart Health- Smart Transportation and Mobility

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Hours: 45

Textbooks:

- 1. ArshdeepBahga. Vijaymadisetti , "Internet of things A hands- on approach", Universities press, First Editon, 2015.
- 2. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley, First edition 2014.
- 3. C HillarGastn, "Internet of Things with Python", Packt publishing, first edition, 2016.

Reference Books:

- 1. Dominique D. Guinard and Vlad M. Trifa "Building the Web of Things With examples in Node.js and Raspberry Pi", June 2016 ISBN 9781617292682
- CharalamposDoukas, "Building Internet of Things with the Arduino" ISBN/EAN13:1470023431 / 9781470023430
- 3. Gastón C. Hillar, "Internet of Things with Python", May 2016, PACKT Publishing limited.
- 4. Marco Schwartz "Internet of Things with the Raspberry Pi: Build Internet of Things Projects Using the Raspberry Pi Platform", Kindle Edition.

•	Subject Name: Cellular Mobile Communication	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Communication system, Computer Networks	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- It deals with the fundamental cellular radio concepts such as frequency reuse and hand off.
- It presents different ways to radio propagation models and predict the large scale effects of radio propagation in many operating environment.

	o prop.	.5	111 1114	ny ope	· · · · · · · · · · · · · · · · · · ·							
COURSE O				(3-5)								
The students												
CO1		ret basi						n.				
CO2		y the co										
CO3	Recog	gnize ba	asic cor	cepts in	n cellul	ar techi	nology.					
CO4									stem co	verage.		
CO5	Exam	ine the	latest v	vireless	system	s and s	tandard	ls.				
Mapping of	Course	e Outco	mes w	ith Pro	gram (Outcon	nes (PO	s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	3	3	3	3	1	3	1	2
CO2	3	3	3	1	2	2	2	3	2	2	2	2
CO3	3	3	3	3	3	3	1	1	3	3	2	3
CO4	3	3	3	3	3	3	3	2	3	3	3	3
CO5	3	3	3	2	3	2	3	3	3	3	3	3
COs /	PS	O 1	PS	PSO2		O3	PS	O4				
PSOs												
CO1		3		2		2		2				
CO2		3		3		2		2				
CO3	3	3		3	3	3		3				
CO4		3		3		2		3				
CO5		3		3		3		3				
3/2/1 indicat	tes Stre	ngth of	f Corre	lation	3- Hi	gh, 2- I	Mediun	n, 1-Lo)W			
Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills	Category		
Cate						V						

Subject Code:	Subject Name: Cellular Mobile	T /	L	T/SLr	P/R	C	
BEC18OE2/B	Communication	L/					
EC20OE2		ETL					
	Prerequisite: Communication system, Computer	Tv	3	0/0	0/0	3	
	Networks	1 y					

UNIT I INTRODUCTION TO MOBILE COMMUNICATION

9 Hrs

History and Evolution of mobile radio system – Types of mobile wireless system/services – Paging, cellular, WLL, FTTH, Wi-Fi, and Future trends in Personal wireless system.

UNIT II PSTN TECHNOLOGY

9 Hrs

Difference between simplex, half-duplex and duplex transmissions – basic understanding of telephone set – history and evolution of Central Exchange Switching – Operator Switch Boards (PBX) – intraoffice and interoffice calls – Extended Area Service (EAS) – circuit switching, packet switching & TDM switching – DTMF signaling – dial register – in band & out-of-band signaling.

UNIT III CELLULAR CONCEPT

9 Hrs

Structure of a cell – Basic cellular terminologies – Principle of Frequency Reuse – Principle of Channel assignment and its types – Types of channel interference – Different types of handoff strategies

UNIT IV INTERFERENCE AND MOBILE RADIO COMMUNICATION

9 Hrs

Interferences in Cellular Systems – Methods to improve cell coverage - Free space propagation model, reflection, diffraction, scattering, link budget design, Outdoor Propagation models and Indoor propagation models

UNIT V WIRELESS SYSTEMS AND STANDARDS

9 Hrs

GSM, IS-95, DECT, AMPS, GPRS, UMTS, WLAN, WPAN, WMAN, Ultra Wideband communications, 4G/LTE and beyond 4G.Telecom standards and wireless standards.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Hours: 45

TEXT BOOKS

- 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and Internet", Pearson Education, 2nd edition, 2008.
 - 2. Anu A. Gokhale, "Introduction to Telecommunications", Delmar, 2nd edition, 2005.
 - 3. T.S. Rappaport, "Wireless Communication, Principle and Practice", Prentice Hall, NJ, 1996
 - 4. Roy Blake," Wireless Communication technology", Thomson Learning, 1st Edition 2001

REFERENCES

- 1. Pete Moulton, Jason Moulton, "The Telecommunication Survival Guide", Pearson Education, 2001.
- 2. Roger L. Freeman, "Telecommunication System Engineering", Wiley-India, 4th edition, 2004.
- 3. W.C.Y.Lee, "Mobile Communication Engineering", (2/e), McGraw-Hill, 1998.
- 4. Dharma P. Agarwal," Introduction to wireless and Mobile systems", Thomson Learning, II Edition, 2006

Subject Coo BEC18OE3		Su	bject N	Name :	Satellit	e and i	ts App	licatior	ns	T / L/ ETL	L	T/SLr	P/R	С
C20OE	3	Pre	erequis	ite:						Ty	3	0/0	0/0	3
L : Lecture 'T/L/ETL : T								Project	R : R	esearch (C: Credi	its		
OBJECTIV	/E:													
						aft subs								
						of domes								
	• To	o app	oly the p	principle	of sate	llite in r	emote s	ensing to	echnolo	ogy				
COURSE (HTC	'nΜ	ES (C	Os) ·										
The students				03) •										
CO1				orincipl	e of orl	bital me	echanic	S						
CO2				_		tellite s								
CO3						satellite		18						
CO4						ng earth								
CO5						tellites								
Mapping of	f Cour	rse (Outcon	nes wit	h Prog	ram O	utcome	es (POs)					
COs/POs	PO	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO :	12
CO1	3				2		3				2	3		
CO2	3		3					3		3			2	
CO3	3						2		3		3			
CO4	3			3		2							3	
CO5	3				3					2				
COs / PSOs		PS	01	PS	O2	PS	03	PS	O4					
CO1	3					2								
CO2	3			3		_		2	2					
CO3	3			2		2			<u> </u>			1		
CO4	12			3					3					
3/2/1 indica	3	***	ath of t	Connole	tion	2 11:~	h 2 M		3 1 T a					
3/2/1 marca	ites St	renş	gui oi v	Correia	111011	3- Hig	II, <i>2</i> - IVI	learum,	, 1-L0	w	I		1	
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills				
							V							

Subject Code: BEC18OE3/BE	Subject Name :Satellite and its Applications	T / L/ ETL	L	T/SLr	P/R	С
C20OE3	Prerequisite:	Ty	3	0/0	0/0	3

UNIT I ELEMENTS OF ORBITAL MECHANICS

9 Hrs

Kepler's laws of planetary motion - Newton's laws of gravitation- Orbital Equation- Orbital Elements-Orbital Perturbation; Tracking and Orbital Determination- Orbital Correction / Control

UNIT HELEMENTS OF SATELLITE SYSTEM

9 Hrs

Space Environment- Spacecraft Configuration- Spacecraft Subsystem- Payload- Reliability Consideration – Spacecraft Integration and Testing.

UNIT III DOMESTIC SATELLITE SYSTEMS AND LAUNCH VEHICLES

9 Hrs

The INSAT System- International System: INTELSAT- IMMARSAT- Satellite Based Personal Communication- LEO- MEO- GEO Systems- PSLV and GSLV

UNIT IVEARTH STATION DESIGN

9 Hrs

Earth Station Configuration- Receiver and Transmitter Subsystems- Terminal Equipment: Telephone / Video Interface-Echo Suppressor- FM Digitizers- Elements of Frequency Co-ordination and Control.

UNIT VAPPLICATIONS OF SATELLITES

9 Hrs

Satellite Broadcasting- Satellite TV Systems.Remote sensing satellites - satellite remote sensing in various important areas- such as environmental issues- agriculture- forestry- urban issues and water management - usage of satellite data models in remote sensing- analysis of data from various climate zones and applications in research and society.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Hours: 45Hrs

TEXT BOOKS:

- 1. T. Pratt and C.W. Bostian, "Satellite Communication" John Wiley & Son- 1986.
- 2. A. Abdul Namith, "Satellite Communication" Lakshmi Publications.

REFERENCES:

- 1. B.N. Agarwal, "Design of Geosynchronous Spacecraft", prentice Hall- 1986.
- 2. D. Roddy, "Satellite Communication", Prentice Hall- 1989.
- 3. M. Richharia "Satellite Communication Systems Design Principles" Macmillan Press Ltd. Second Edition 2003.
- 4. http://www.ceinsys.com/blog/applications-of-satellite-imagery-remote-sensing-data/

Subject Code:	Subj	ject Nar	ne :Fun	damen	tals of S	Sensors			T / L/ ETL	L	T/S Lr	P/R	С
BEC180E4/ BEC200E4	Prere	equisite:							Ту	3	0/0	0/0	3
L : Lecture T :	Tuto	rial SI	r : Supe	ervised l	Learnin	g P : Pı	roject R	: Resea	rch C: C	redits			
T/L/ETL: The							3						
OBJECTIVE	:												
	То	understa	andbasic	fundar	nentals	of senso	or.						
	То	study s	ensor ch	naracteri	stics.								
•		underst		sor prop	erties o	of eleme	nts.						
COURSE OU			COs):										
The students v													
CO1		pret bas											
CO2		ognize s											
CO3	Dem	onstrate	e sensor	properti	ies.								
CO4		ain prin											
CO5	Stud	y variou	is senso	r elemer	nts.								
Mapping of C	Course	Outco	mes wit	h Progi	ram Ou	itcomes	(POs)						
COs/POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	О	PO
	1										11		12
CO1	3	2	3	3	2	1	2	1	1	2	2		2
CO2	3	2	2	3	2	1	2	1	2	2	2		2
CO3	3	2	2	2	2	2	2	1	2	2	2		3
CO4	2	2	2	2	2	1	1	2	1	2	2		3
CO5	2	2	2	2	2	1	1	2	1	2	2		2
COs / PSOs	PS	SO1	PS	O2	PS	O3	PS	O4					
CO1		3		2		2		3					
CO2		3		2		2		3					
CO3		3		3		2		3					
CO4		3		3		2		3					
CO5	3.5.04	2	_	2		3		3					
3/2/1 indicate	sM St	rength	of Corr	elation	3- Hi	gh, 2- N	ledium,	, 1-Low		1			
gory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Category						1							

Subject	Subject Name :Fundamentals of Sensors	T / L/	L	T/S	P/R	С
Code:		ETL		Lr		
BEC18OE4/	Prerequisite:	Ty	3	0/0	0/0	3
BEC20OE4	•			0, 0	0,0	

UNITI SENSOR FUNDAMENTALS

9 Hrs

Basic Sensor Technology - Sensor Systems - Sensor Characteristics - Signals, and Systems - Sensor Classification

UNITII SENSOR CHARACTERISTICS

9 Hrs

Transfer Function - Span (Full-Scale Input) - Full-Scale Output - Accuracy- Calibration -- Calibration Error - Hysteresis - Nonlinearity - Saturation

UNITHI SENSOR PROPERTIES

9 Hrs

Repeatability - Dead Band - Resolution - Special Properties - Output Impedance - Excitation .- Dynamic Characteristics - Environmental Factors - Reliability

UNITIV PHYSICAL PRINCIPLES OF SENSING

9 Hrs

Electric Charges, Fields, and Potentials - Capacitance - Magnetism - Induction - Resistance - Piezoelectric Effect -

UNITY SENSOR ELEMENTS

9 Hrs

Mechanical Elements - Thermal Elements - Electrical Elements - Application Characteristic - Uncertainty

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Hours: 45

TEXTBOOKS:

- 1) Jacob Fraden, "Handbook Of Modern Sensors Physics, Designs, And Applications"
- 2) Jon S. Wilson," Sensor Technology Handbook

REFERENCEBOOKS:

1) Ian Sinclair, "Sensors and Transducers" eBook ISBN: 9780080516998 Hardcover ISBN: 9780750649322

Subject Code:		bject N		asics of	Micro	process	or and		T/L/	L	T/SLr	P/R	C
BEC180E5 /BEC200E5		icrocon							ETL		0/0	0/0	
		erequisi		.i.a.lT.	:	D . Das	D .	Dagasas	Ty	3	0/0	0/0	3
L : Lecture T : T/L/ETL : The						P : Proj	ject K:	Researc	en C: Cre	ans			
OBJECTIVE), Lintocc	ided III	cory arr	a Lao								
ODGE CITYE		study	the arc	hitectur	e. add	ressing	modes.	and a	assembly	langua	age pro	gram of	8085
		oproces			,	8	,					6	
•	Tou	ındersta	nd the c	oncepts	of diffe	erent pe	ripheral	s and the	eir applic	ations			
•	Tol	earn the	functio	ns of 80)51 mic	rocontro	oller.						
The students w) s):										
CO1	Write proces		y langu	age pro	gram in	8085 aı	nd 8086	and unc	lerstand t	he desig	gn of ad	vanced	
CO2	Show	their abi	lity to i	nterface	periph	erals wi	th micro	process	ors				
CO3	Done	the infer	enceof	advance	ed perip	heral wi	th 8085						
CO4	Demo	nstrate t	heir ski	lls in wi	riting an	ALP in	8051.						
CO5	Apply	their un	derstan	ding to	do a pro	oject to	develop	an appl	ication us	sing808	5.		
Mapping of C						•		- 11					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	3	2	2	2	2	3		-		2	2		-
CO2	3	3	3	3	3	3		2		2	2		2
CO3	2	2	2	2	3	3	2	3		2	3		2
CO4	3	3	3	3	3	-	2	3		2	-		3
CO5	3	2	-	2	2	2	3	-	3	2	3		3
COs / PSOs		01	PS			03	PS	SO4					
CO1	1	3	3			2							
CO2		3	3					2					
CO3		2	3										
CO4		3	2	2				3					
CO5						2		3					
3/2/1 indicate	esM St	rength	of Co	rrelatio	on 3-	High, 2	2- Med	ium, 1-	Low	1	_	r	
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	✓ Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Subject Code:	Subject Name :Basics of Microprocessor and	T / L/	L	T/SLr	P/R	C
BEC18OE5/BE	Microcontroller	ETL				
C20OE5	Prerequisite:	Ту	3	0/0	0/0	3

UNIT-I 8085 CPU

9 Hrs

Internal Architecture of 8085 microprocessor – Instruction set – Addressing modes – 8085 interrupts – Timing diagram – Assembly level programming.

UNIT II PHERIPHERALS INTERFACING

9 Hrs

USART (8251) – Programmable interval timer (8353/8254) programmable peripheral interface (8255) – CRT controller (8275/6845) – Floppy disk controller (8272).

UNIT III ADVANCED PHERIPHERALS INTERFACING

9 Hrs

Programmable DMA controller (8257) – Programmable Interrupt controller (8259) – Keyboard display interface (8279) – ADC/DAC interfacing.

UNIT IV8051 MICROCONTROLLER

9 Hrs

8051 Microcontroller hardware and Architecture –I/O pins, Ports and circuits–Counters and Timers-Serial Data I/O – Interrupts - 8051 Instruction set – Addressing Modes –Assembly Language Programming.

UNIT V 8085 APPLICATIONS

9 Hrs

Typical application of 8085 – Stepper motor controls – Traffic light controls – waveform generation – Analog interfacing and industrial control – Microcomputer based system with seven segment displays and switches.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Hours: 45

TEXT BOOKS:

- 1. Ramesh s. Gaonkar, Microprocessor Architecture Programming and Applications with 8085. Fourth edition, Penram international publishing 2000.
- 2. Douglas V. Hall, microprocessor and interfacing, programming and hardware, Tata McGraw Hill, second edition 1999.

REFERENCES:

- 1. A.K.Ray and K.M.Burchandi ,"Intel Microprocessors Architecture Programming and Interfacing" McGraw Hill International edition, 2000.
- 2. Kenneth Jayala, "The 8051 Microcontroller Architecture Programming and Aapplication", 2nd edition, Penram International publishers (India), New Delhi, 1996.
- 3. M.RafiQuazzaman, "Microprocessors Theory and Applications", Intel and Motorola prentice Hall of India

, Pvt. Ltd., New Delhi, 2003

				(111	T TT T		11/11		OL:						
Subject Code BEC18OE6/I		Sub	ject Na	me :Ind	lustry 4	.0 Conc	epts			T / L/ ETL	L	T/SLr	P/F	₹	С
C20OE6		Prer	equisite	:						Ту	3	0/0	0	/0	3
L : Lecture T : T/L/ETL : The							: Projec	t R : Re	search	C: Credi	ts				
	nts wi									ne core are		ndustry ²	4.0.		
COURSE OU The Students v):(3-5	5)										
CO1				nd the o	pportun	ities and	d challer	nges in t	he four	th industr	rial revo	olution.			
CO2		D	Describe	, discuss	and rel	ate IoT	techniqu	ies adop	ted for	an indus	try.				
CO3		D	emonst	rate the	importa	nce of v	arious t	echnolo	gies in	volved in	enablin	g indust	ry 4.	0.	
CO4		A	nalyze	the pow	er of Cl	oud Cor	nputing	in a net	worked	leconom	y.				
CO5		Iı	nterpret	technolo	ogies av	ailable i	n IoT.								
Mapping of C	ourse	e Ou	itcomes	omes with Program Outcomes (POs)											
COs/POs	PC)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO1	2
CO1	2	2	2	2	3	3	3	3	3	3	2	3		3	;
CO2	3		2	2	3	3	3	3	3	3	3	3		3	
CO3	3		3	3	3	3	3	3	3	3	3	3		3	
CO4	3		2	3	3	3	3	3	3	3	3	3		3	
CO5	2		2	3	3	3	3	3	3	3	3	3		3	i
COs / PSOs		PS			02		03		04						
CO1 CO2		2	2		2 2		3		3						
CO3			3		3		3		3						
CO4					2		3		3						
CO5		2	2	2	2	-	3		3						
3/2/1 indicates	s Stre	ngtl	h of Co	rrelatio	n 3- H	ligh, 2-	Mediun	n, 1-Lov	W						
gory	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills					
Category			H	T S	1	1	√	T		<u>~</u>					

Subject Code: BEC18OE6/BE	Subject Name :Industry 4.0 Concepts	T / L/ ETL	L	T/SLr	P/R	С	
C20OE6	Prerequisite:	Ty	3	0/0	0/0	3	

UNIT I Introduction to Industry 4.0

9 Hrs

The various Industrial Revolutions – Digitalization and the Networked Economy – Drivers, Enablers, Compelling Forces and Challenges for Industry 4.0 – The Journey so far: Developments in USA, Europe, China and other countries – Comparison of Industry 4.0 Factory and Today's Factory – Trends of Industrial Big Data and Predictive Analytics for Smart Business Transformation.

UNIT II Road to Industry 4.0

9 Hrs

Internet of Things (IoT) & Industrial Internet of Things (IIoT) & Internet of Services – Smart Manufacturing – Smart Devices and Products – Smart Logistics – Smart Cities – Predictive Analytics

UNIT III Technologies for enabling Industry 4.0

9 Hrs

Cyber physical systems – Robotic Automation and Collaborative Robots – Support System for Industry 4.0 – Mobile Computing – Related Disciplines – Cyber Security.

UNIT IV Resources

9 Hrs

Resource- based view of a firm – Data as a new resource for organizations – Harnessing and sharing knowledge in organizations – Cloud Computing Basics – Cloud Computing and Industry 4.0 – Smart Factories

UNIT V IoT Technologies

9 Hrs

Industry 4.0 laboratories –IIoT Reference Architecture – Designing Industrial Internet Systems – Examining the Middleware Transport Protocols – IIoT WAN Technologies and Protocols - Securing the Industrial Internet.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Hours: 45

TEXT BOOKS:

- 1. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing the Digital Transformation", Springer Series in Advanced Manufactruing.
- 2. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress Publications.

REFERENCES:

1. Rajesh Agnihotri and Samuel New, "Industry 4.0 Data Analytics", CreatespaceIndependent Pub (US)

OPEN LAB

Subject Code: BEC18OL1/B	Sul	bject N	ame :S	Sensors	and Io	T Lab			T / L/	L	T/SLr	P/R	С
EC20OL1	Dre	erequisi	to.						ETL Lb	0	0/0	3/0	1
L : Lecture T :		•		Zunomi	ad I o	owning	D . D.	ningt		•	0/0		1
T/L/ETL : The				_		_	F ; FI	ojeci	n : nes	earcii	C. Cred	nts	
OBJECTIVE :					Ji y and	Lab							
		experiı	ments	based	on ser	ısor wi	ith IO	Г.					
	_	experii							onmer	ıt.			
COURSE OUT													
The Students v		,		()									
CO1	Ir	mpleme	ent C s	ource	code to	interf	ace ser	isors v	vith IO	T.			
CO2	D	esign s	simple	projec	ts usin	g diffe	rent ty	pes sei	isors.				
CO3		nterface					• •						
CO4		mpleme											
CO5		esign r						sensors	<u> </u>				
Mapping of Co													
11 0	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO1	2
CO1	3	3	3	3	3	1	2	1	2	2	3		3
CO2	3	2	2	3	3	1	2	1	2	2	3		3
CO3	3	2	3	3	3	1	2	1	2	2	3		3
CO4	3	2	2	3	3	2	2	1	2	2	3		3
CO5	3	2	3	3	3	1	2	1	2	2	3		2
COs/	PS	O1	PS	O2	PS	O3	PS	O4					
PSOs			 										
CO1		3		3	2		3						
CO2		3		3	2		3						
CO3	3	3		3	1		3						
CO5		3		3	1		3						
3/2/1 indicates S			_	_	-	•	_						
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

BEC18OL1/B	Subject Name :Sensors and IoT Lab	T / L/	L	T/SLr	P/R	С
EC20OL1		ETL				
	Prerequisite:	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- To familiarize with Intel Galileo Gen2 board and understand the procedure of creation and compilation of C source code. (Pre-Loaded Examples)
- 2. Write a code to control the Brightness of LED using Intel Galileo Gen 2 board.
- To write C source code to Interface Temperature Sensor with Intel Galileo Gen 2 and display the temperature on serial Monitor.
- 4. To write C source code to Interface Humidity Sensor with Intel Galileo Gen 2 and display the temperature on serial Monitor.
- 5. Interface Motion sensor, with Intel Galileo Gen 2 to give alert when motion is detected.
- 6. To write C source code to Interface Sound Detector with Intel Galileo Gen.
- 7. To write C source code to Interface accelerometer with Intel Galileo Gen 2 and display the values in serial monitor.
- 8. To write C source code to Perform Gas Sensor Interfacing with Intel Galileo Gen2 Board.
- 9. To Interface a Flame and Smoke sensor with Intel Galileo Gen 2 in cloud service.
- Design a smart Lighting system using Light sensor, Motion sensor and indicate the status of the light in cloud service.

Subject BEC18	OL2	/BE	Subject N	Name :F	Robotic	s Contr	ol Lab			T / L/	L	T/SL	r P/I	2	С
C20	OOL2		Prerequis	ite:						ETL Lb	0	0/0	0 3		1
L : Lect	ure T	: Tutor	ial SLr	: Super	vised L	earning	P : Pro	iect R :	Resear	ch C: C	redit	<u> </u>			
			ıb/Embe	•		_		3							
OBJEC	CTIV	E :													
•	To u	nderstan	d the dif	ferent ro	obotic c	onfigura	ations a	nd their	subsyst	ems.					
			MES (CO	(3)	- 5)										
		will be ab				10									
CO1			e robots												
CO2	• •	• •	ramming				e variou	s device	es with a	ırduino.					
CO3			ots using												
CO4			d measur												
Mappir	ng of	Course	Outcom	es with	Progra	ım Out	comes ((POs)							
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS	P	PO1	PO11	PO	12
CO1		3	3	3	2	2	2	2	2	3		2	1	2	
CO2		3	3	3	3	3	1	2	2	3		1	2	2	;
CO3		3	3	3	2	3	2	2	1	3		2	2	2	,
CO4		3	3	3	3	3	1	2	2	3		1	2	2	;
COs /		PS	0 1	PS	O2	PS	O3	P	SO4						
PSOs															
CO1			3	1	2	,	2		3						
CO2			3	3	3	,	2		3						
CO3			3	,	2	,	2		3						
CO4			3	2	2	,	2		2						
3/2/1 in	dicat	es Strer	gth of C	orrelat	ion 3	- High,	2- Med	ium, 1-	Low	l		1		l	
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	Cate							$\sqrt{}$							

	Subject Name :Robotics Control Lab	T /	L	T/SLr	P/R	С
Subject		L/				
Code:		ETL				
BEC18OL2/BE	Prerequisite:	Lb	0	0/0	3/	1
C20OL2					0	

LIST OF EXPERIMENTS

- 1. Simple Robot circuit
- 2. Build a Light-Tracking Robot
- 3. Simple Insect Robot
- 4. Line follower Robot
- 5. Two-Legged Walking Robot
- 6. Robot Control using 555 Timer
- 7. Study of AVR Studio and code Debugging
- 8. Interfacing Switch to turn on Bar graph LEDs. (Implementing a "Push to ON" indicator)
- 9. LCD Interfacing to display alphanumeric characters.
- 10. LCD Interfacing to displaying integer values on the LCD.
- 11. Generation of delay using timer and turning 'ON' the buzzer
- 12. Indication of the value of counter on LCD
- 13. DC Motor Interfacing
- 14. PWM control of the DC motor

Subject BEC18			bject N	lame :	Basics	of MA	TLAB			T / L/	L	T/SLr	P/R	С
EC20										ETL				
		Pr	erequisi	ite:						Lb	0	0/0	3/0	1
L : Lect	ure T	: Tuto	rial S	Lr : Sur	pervised	l Learn	ing P:	Project	t R : R	esearch	C: Cre	dits		1
T/L/ET				•			_	3						
OBJEC	TIV	E :												
•	Be fa	amiliar	with the	e MAT	LAB G	UI and	basic to	ool box	es					
				or and r										
•	Be fa	amiliar	with ar	ithmetic	e, logica	al and r	elationa	al opera	itions o	n matri	X			
COUR					(3-5)									
The Stu														
CO1				TLAB				oxes						
CO2		Identif	y vecto	r and m	atrix o _l	peration	ıs							
CO3		Illustra	te with	progran	nming	arithme	etic, log	gical an	d relati	onal op	erations	on ma	trix	
Mappir														
										DOO	DO 10	DO1	1 DO1	
COs/PO	Js	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO1	2
CO1		3	3	2	2	3	1	2	2	3	3	3		2
CO2		3	2	3	2	3	1	2	1	3	3	3		2
CO3		3	2	3	3	3	2	2	2	3	3	3		3
COs /		PS	01	PS	O2	PS	O3	PS	O4					
PSOs														
CO1			3		3		2		3					
CO2			3		3		3		3					
CO3			3		3		3		3					
3/2/1 in	dicat	es Stre	ngth of	f Corre	lation	3- Hig	gh, 2- N	Iedium	, 1-Lo	W				
				al					al					
			ences	Social					nic					
			ien			ves		ect	ech					
		ces	Sc	anc	re	ecti	ves	roj	ps / T Skill					
		Basic Sciences	Engineering Sci	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Ils				
		Sc	leer	unit ces	am	am	Elé	cal	ıshi	škil				
	ıry	ısic	gir	Humanit Sciences	ogr	ogr	en	acti	terr	Soft Skills				
	Category	$\mathbf{B}a$	En	Ht. Sc	Pr	Pr	OF	Pr	In	\mathbf{S}_0				
	Cat													

Subject Code: BEC18OL3/B EC20OL3	Subject Name : Basics of MATLAB	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite:	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Introduction to SDK of MATLAB
- 2. Basic Syntax and scalar arithmetic operations and calculations
- 3. Working with formulas
- 4. Arithmetic operations in matrix data
- 5. Matrix operations (Inverse, Transpose)
- 6. Reading an image file
- 7. Reading from and writing to a text file
- 8. Introduction to toolboxes
- 9. Data visualization and plotting
- 10. Relational operators in data
- 11. Logical operation in data
- 12. Loops in MATLAB
- 13. Computing Eigen value for a matrix
- 14. Random number generation Monte Carlo methods

Open Electives-Information Technology

Subject Code:		Subject Na						1	Ty/	L	T /	P/R	C
BIT18OE1/BIT20C	E1 V	WEB DE	ESIGN						Lb/		S.Lr		
								I	ETL				
	F	rerequisi	te: Nil						Ty	3	0/0	0/0	3
L : Lecture T : Tutoria		r : Superv		earning	P:Pro	oject R	: Resea	arch C:	Credit	S	•	•	
Ty/Lb/ETL: Theory/I	_ab/Em	bedded T	heory a	nd Lab)								
OBJECTIVES:													
The stude	ents wi	ll learn t	he Net	work a	and Inte	ernet w	orks.						
• To learn	the HT	ML prog	gram st	ructur	e, elem	nents ai	nd Tag	s.					
 To have l 	knowle	dge to d	esign t	asic w	ebsite	for the	ir own						
• To learn	how to	design a	an effe	ctive w	ebsite	using	CSS.						
• To learn		_				_		langua	ages.				
COURSE OUTCOM				• •			-r ****E	, 5 •••	0-0-				
CO1	(-	Basics of		ork and	d Intern	et work	S.						
CO2		Able to											
CO3		Ability 1	to make	e a well	interac	ctive on	line app	plicatio	ns.				
CO4										des	ign a qu	ality web	site.
Mapping of Course (
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO1	1 PO12
001	2	-	2	1		2	-1	-	2	-		1	1
CO1	3	1	2	1	1	3	1	1	3	+	2	1	1
CO2	2	2	3	3	1	1	3	1	1		1	1	3
CO3	$\frac{2}{2}$	2 2	3	1	3	2	1	1	2	-	2	1	1
COs / PSOs		SO1		$\frac{1}{\mathbf{O2}}$	DC	03		O4				1	1
CO1	1	1		<u>02</u> 3	15	1	13	1					
CO2		1		3		1		1					
CO3		3		2		1		1					
CO4		3		2		<u>-</u> 1		1					
3/2/1 indicates Streng	th of C				2- Medi	ium, 1-	Low		1				
				<i>y</i>									
			d S		Program Electives		ect	/ ii1					
ory	ces	50	ang ang	ore	ecti	ive	Proj	ips Sk					
egc	ien	ling.	lies cie	ŭ	田田	ecti		nsh ical					
Category	Sc	leer ces	anit 1 S	am.	am.	百百	ical	Internships / echnical Ski	Skil				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	ogr	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
	Be	En Sc	H _L S	Pr	P_{Γ}	O	Pr		So				
						/							

Course Code	Course Title	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
BIT18OE1/BIT20OE1	WEB DESIGN	Ту	3	0/0	0/0	3

UNIT I: Introduction to Network

9 Hrs

Introduction to computer networks and uses - Network: devices, topology and types - Communication media. Introduction to OSI layers, Port and Protocols, Network applications. Client / Serverarchitecture.Internet server provider, DNS and Hosting.

UNIT II: Web Design Principles

9 Hrs

Brief History of Internet - What is World Wide Web - Why create a web site - Web Standards - Audience requirement. Basic principles involved in developing a web site - Planning process - Five Golden rules of web designing - Designing navigation bar - Page design - Home Page Layout - Design Concept.

UNIT III: HTML 9 Hrs

Introduction to HTML- HTML version- Basic structure of an HTML document – Creating HTML document – HTML Elements - HTML Tags - Working with Text - Working with Lists, Tables and Frames - Working with Hyperlinks, Images and Multimedia - Working with Forms and controls .

UNIT IV: Cascading Style Sheet

9 Hrs

Concept of CSS - Creating Style Sheet - CSS Properties - CSSStyling (Background, Text Format, Controlling Fonts) - Working with block elements and objects - Working with Lists and Tables - CSS Id and Class - Box Model(Introduction, Border properties, Padding Properties, Margin properties) - CSS Advanced(Grouping, Dimension, Display, Positioning, Floating, Align, Pseudo class, Navigation Bar, Image Sprites, Attribute sector) - CSS Color - Creating page Layout and Site Designs.

UNIT IV: Scripting Languages

9 Hrs

JavaScript introduction – control structures – functions – arrays – objects – simple web applications. Web hosting and maintenance.

Total Hours: 45

Text Books:

- 1. Computer Networks by A Tanenbaum 5th edition, Pearson Education
- 2. Mastering HTML, CSS & JavaScript Web Publishing by Laura Lemay, Rafe Coburn, Jennifer Kyrnin, Pearson Education.
- 3. HTML & CSS: The Complete Reference, Fifth Edition by Thomas A. Powell, McGraw-Hill publication.

Ty/

 \mathbf{L}

P/R

 \mathbf{C}

Subject Name:

Subject Code:

BIT18OE2/BIT20O		IGITA		RKET	ING				Lb/	L	S.Lr	r/K	C
			2 1 1 1 1		110				ETL		5.11		
	D _m		to. Nil						Т.,	3	0/0	0/0	3
L : Lecture T : Tutoria		erequisi			D · Dro	niect R	: Resea	arch C	Credi		0/0	U/U	3
Ty/Lb/ETL : Theory/L						Jeet K	. KCSC	iicii C.	Cicui	.13			
OBJECTIVES:													
	00111100	holne	the et	udonto	to u	ndorete	and the	o fun	lamar	stol	princir	aloc o	f Digital
	eting, the											0.010	Digital
	_	-	-		-			_		_		orkati	ng in the
	nt conte							•					_
-			-	γ an c-	ınaı KC	mg pi	tii Willi	ирргс	Priace	J C=1.	iidi KCtII	15 stra	egics.
COURSE OUTCOM						<u> </u>	137.						
CO1	Underst						ıl Mark	eting					
CO2	Develop												
CO3	Evaluat			_		es							
CO4	Predict	the Ma	rketing	Trends									
Mapping of Course C	Outcome	s with l	Prograi	m Outo	comes (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO1	1 PO12
CO1	3	1	2	1	1	1	1	3	1		2	1	1
CO2	3	2	1	1	1	1	3	1	1		1	1	3
CO3	2	2	3	1	3	2	1	1	2		2	1	1
CO4	2	2	3	1	1	2	1	1	2		2	3	1
COs / PSOs	PSC	D1	PS	O2	PS	О3	PS	O4					
CO1	1		3	3	1	1	1	1					
CO2	1		3	3	1	1	1	1					
CO3	3		2	2	1	1	1	1					
CO4	3		2	2]	1	1	1					
3/2/1 indicates Streng	ngth of Correlation 3- High, 2- Medium, 1-Low												
					es		x						
	Se		nd	e	tiv	es	ojec	s/ kill					
17.	oue	gu	es a	Cor	Elec	ctiv	/ Pr	thip al S		2			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	1.7	SOIL SKIIIS			
Cat	sic	Engineer Sciences	ma cial	gra	gra	en]	ıctic	Inte ech	5	211			
	Ва	En Sci	Hu	Pro	Pro	Op	Pre	T	2	200			
		!											

Course Code	Course Title	Ty/ Lb/	L	T/ S.Lr	P/R	С
		ETL				
BIT18OE2/BIT20OE2	DIGITAL MARKETING	Ту	3	0/0	0/0	3

UNIT I: INTRODUCTION

Hrs

Digital-Marketing Past, Present & Future – Digital-Marketing Landscape, Digital-marketing's Past - Web 1.0, Digital Marketing Present - Web 2.0, Future -Web 3.0, Strategic Digital-Marketing, and Digital -Business Models – Online Revenue Models, Value Models, and Strategic Digital-Business Models.

UNIT II: DIGITAL MARKETING PLAN

9 Hrs

Process, Creating a Digital-Marketing Plan, Seven Steps –Situation Analysis, Strategic Planning, Objectives, Digital-Marketing Strategies – Product, Price, Distribution, Communication, Relationship Management; Implementation plan, Budget, Evaluation.

UNIT III: DIGITAL -MARKETING ENVIRON MENT

9 Hrs

Overview of Digital-Marketing Environment, Global Digital -Markets, Wireless Internet Access, Digital divide, Building inclusive Digital markets, social networking, Ethical and Legal Issues – Overview, Digital Property, Emerging issues.

UNIT IV:DIGITAL-MARKETING MANAGEMENT

9 Hrs

Online offer – Creating customer value online, Product Benefits, Digital Marketing enhanced product development, Payment options, Pricing Strategies; Internet as distribution, Digital Marketing Communication – Owned Media, Paid media, Earned Media.

UNIT V: EMERGING TRENDS

9 Hrs

Emerging trends in Digital-marketing, Content Marketing, Social Media Marketing, Email Marketing, Affiliate Marketing, Video Marketing, Mobile Marketing, Interactive advertising, International Online Marketing, Search Engine Marketing, Online Partnership, Viral Marketing, E-CRM, E-Business, E-Tailing.

Total Hours: 45

TEXT BOOK:

1. Strauss Judy, Frost Raymond (2013), E-Marketing, 7/e; New Delhi: Prentice Hall.

2

REFERENCE BOOKS:

- 1. Chaffey Dave and Smith PR (2013), Emarketing Excellence: Planning and Optimizing your Digital Marketing; 4/e; Routledge.
- 2. Ryan Damian, (2014), Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, 3/e; Kogan Page Limited.

Subject Code: BIT18OE3/BIT20OE3	Subject Name: INFORMATION SECURITY MANAGEMENT	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
	Prerequisite: Nil	Ty	3	0/0	0/0	3

 $L: Lecture \ T: Tutorial \quad S.Lr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To provide an understanding of the principles of information security management commonly used in business
- ➤ Introduce the commonly used frameworks and methods
- Explore critically the suitability and appropriateness of security needs.

COURSE OUTCO	MES (C	Os): (3-	- 5)										
CO1		To Und	To Understand the Security and classification of Components.										
CO2	Concep	Concept of Security Analysis, Design and Implementation											
CO3		Develo	Develop the security plan methodology and follow policy procedures										
CO4		Using I	Using ISO to enhance security										
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO12	
											11		
CO1	3	1	2	1	1	1	3	1	1	2	1	3	
CO2	3	2	1	3	1	1	1	1	1	1	1	1	
CO3	2	2	3	1	1	2	1	3	2	2	1	1	
CO4	2	2	3	1	3	2	1	1	2	2	1	1	
COs / PSOs	I	PSO1	PSO2		PSO3		PSO4						
CO1		1	ĺ.	3	-	1		3					
CO2		1	ĺ.	3		1		1					
CO3		3		2		3	1						
CO4		3		2		1		1					
3/2/1 indicates Stre	ngth of	Correlati	ion 3-	High,	2- Med	<u>ium, 1-</u>	Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						'							

Course Code	Course Title	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BIT18OE3/BIT20OE3	INFORMATION SECURITY MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I: INTRODUCTION TO INFORMATION SECURITY AND MANAGEMENT 9 Hrs

Information sensitivity classification-governance-computing environment- security of various components – Management Concepts: traditional management skills and security literacy, managerial skills, redefining Mintzberg's Managerial roles, IS Security management activities-information security management life cycles- security management vs functional management

UNIT II: INFORMATION SECURITY LIFECYCLE

9 Hrs

Introduction-Security planning in SLC-Security analysis-security design- security implementation – design- continual security

UNIT III: SECURITY PLAN AND POLICY

9 Hrs

Security plan: Development guidelines-security plan methodologies- Policy: security policy, standards and guidelines- security policy methodologies

UNIT IV: SECURITY RISK MANAGEMENT

9 Hrs

Introduction- risk management life cycle- preparation efforts- security culture-factors affecting security risk- ALE risk methodology- operational, functional and strategic risks- ABLE methodology

UNIT V: SECURITY DESIGN AND IMPLENTATION

9 Hrs

ISO/IEC 27002- Using ISO/IEC 27002 to enhance security- measurement and implementation-general ISMS Framework- ISMS Model and design- integration of ISMS Subsystems-self assessment for compliance- Security solutions: security management, access control, security analysis

Total Hours: 45

Text Book

1. "Information Security Management: Concepts and Practice "Bell G. Raggard, CRC Press 2010

Reference Books:

- 1. "Information Security Management Principles" David Alexander, Amanda Finch, BCS Learning and Development Ltd, 2013
- 2. "Security Analysis and Portfolio Management" Ronald E Fischer, S.Kevin PHI Learning Pvt Ltd. 2015.

Subject Code: BIT18OE4/BIT200		Subject Name: INTRODUCTION TO MULTIMEDIA					.]	Гу/ Lb/	L	T/ S.Lr	P/R	С	
									TL				
		Prerequis							Ту	3	0/0	0/0	3
L : Lecture T : Tutoria		r : Super				oject F	R : Rese	arch C	Cre	dits			
Ty/Lb/ETL: Theory/l	Lab/Em	bedded 7	Theory	and La	b								
OBJECTIVES:													
1. To learn about Ba													
2. To understand the	e differ	ence bet	ween i	normal	, 2D ar	nd 3D	Dimen	sional	Grap	hic	S		
3. To understand the	e conve	rsion of	2D to	3D Pio	ctures.								
COURSE OUTCOM	IES (C	$\overline{\mathrm{Os}}$: (3-	- 5)										
CO1		Underst											
CO2	Transform geometrical structures, perform clipping						on g	eom	etrical o	bjects			
CO3		Concept	of Var	ious Cl	ipping	Operati	ions						
CO4 Analyze a 3D structure													
Mapping of Course	Outcom	nes with	Progra	m Out	comes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12
CO1	3	1	2	3	3	1	1	L	1		2	1	1
CO2	3	2	1	1	1	1	1	1	1		1	1	3
CO3	2	2	3	1	1	2	3	3	2		2	1	1
CO4	2	2	3	1	1	2	1	1	2		2	3	1
COs / PSOs	PS	SO1	PSO2		PS	PSO3 PSO4		O4					
CO1		1	3	3	-	1	-	1					
CO2		1	3		3	3	-	1					
CO3		3	2		-	1	3	3					
CO4		3	2			1		1					
3/2/1 indicates Stren	gth of (Correlati	ion 3-	High,	2- Med	ium, 1	-Low						
Category	Basic Sciences	Engineering Sciences	nd		Program Electives	Open Electives	Practical / Project	Internships / Technical Skill		Soft Skills			
						'							

Course Code	Course Title	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
BIT180E4/BIT200E4	INTRODUCTION TO MULTIMEDIA	Ту	3	0/0	0/0	3

UNITI Types of Display

9 Hrs

Video display device: Cathode ray tube, Raster scan displays, Random scan displays. Raster scan systems, Random scan systems, Input devices, Graphics software.

UNIT II Basic Algorithm of Drawings

9 Hrs

Output Primitives: Points & Lines, Line drawing Algorithms, Loading the frame buffer, Circle & Ellipse generating Algorithms, Pixel addressing & Object geometry, Fill area primitives, Character generation

UNIT III Types of Transformation

9 Hrs

2-D Geometric Transformations: Basic Transformations, Matrix representation & Homogeneous Coordinates, Composite Transformations, Other Transformations, Transformations between Coordinate Systems, Raster methods for Transformations

UNIT IV Clippings Operation

9 Hrs

2- Dimensional Viewing: Viewing pipeline, Viewing Coordinate reference frame, Window-to-view port coordinate transformation, Line clipping, Polygon Clipping, Curve Clipping.

UNIT V 3D Effects

9 Hrs

3 -D Concepts: 3 -D display methods. 3-D Geometric & Modeling Transformations: Translation, Rotation, Scaling, Other Transformations, Composite Transformations, Modeling & Coordinate.

Total Hours: 45

Text Book:

1. D.Hearn &M.P.Becker, "Computer graphics"; 2 nd Ed., Prentice Hall India-1995

References:

- 1. Foley Vandam & Hughes, "Computer Graphics"; Addision Wesly.
- 2. Angel Edward., "Interactive Computer Graphics A Top-down Approach with OpenGL", Addison-Wesley 1996.
- 3. Newmann W and Sproull R.F., Principles of Interactive Computer Graphics, McGraw-Hill, 1980